

Urban vs. Wildland Wildfires: Implications for Assessing Dioxin & Furan Impacts Heather Lord, Terry Obal

Overview of Presentation

- 1. Introduction to Dioxins and Furans
- 2. Dioxin and Furan Levels from Wildland vs. Urban Wildfires
- 3. Sampling and Analysis Considerations
- 4. Recommendations

Introduction to Dioxins and Furans

Dioxins & Furans - General Facts

- Polychlorinated, aromatic hydrocarbons
- Toxic, persistent, bioaccumulative, anthropogenic.
- Canadian government is targeting virtual elimination from anthropogenic sources, 80% of (anthropogenic) releases come from:
 - Municipal waste combustion
 - Residential wood combustion
 - Iron sintering
 - Electric arc furnace steel manufacture
 - Burning salt-laden wood in coastal pulp and paper boilers
 - Vehicle fuel combustion (diesel, marine)

Dioxin & Furan Chemistry

Dioxins

- Dioxin = polychlorinated dibenzopara-dioxin (PCDD). 75 chemicals in the family
- Varying numbers of chlorine atoms (up to eight) can be attached to the structure.
- Seven toxic dioxin congeners: **2,3,7,8-TCDD is the most toxic.**

Dibenzo-p-dioxin

Furans

- Furan = polychlorinated dibenzofuran (PCDF). 135 chemicals in the family
- Varying numbers of chlorine atoms (up to eight) can be attached to the structure..
- Ten toxic furan congeners:
 2,3,4,7,8-penta-CDF is the most toxic.

Dibenzofuran

Naming Conventions

Toxic Equivalency Factors (TEFs)

TEF values allow us to express concentration in terms of Toxic Equivalents (TEQ)

DIOXINS	NATO TEF	WHO TEF
2,3,7,8-Tetra CDD	1	1
1,2,3,7,8-Penta CDD	0.5	1
1,2,3,4,7,8-Hexa CDD	0.1	0.1
1,2,3,6,7,8-Hexa CDD	0.1	0.1
1,2,3,7,8,9-Hexa CDD	0.1	0.1
1,2,3,4,6,7,8-Hepta CDD	0.01	0.01
1,2,3,4,6,7,8,9-Octa CDD	0.001	0.0003

TEQ = TEF x concentration in sample

2,3,7,8-Tetrachlorodibenzo-p-dioxin

Toxic Equivalency Factors (TEFs)

FURANS	NATO TEF	WHO TEF
2,3,7,8-Tetra CDF	0.1	0.1
1,2,3,7,8-Penta CDF	0.05	0.03
2,3,4,7,8-Penta CDF	0.5	0.3
1,2,3,4,7,8-Hexa CDF	0.1	0.1
1,2,3,6,7,8-Hexa CDF	0.1	0.1
1,2,3,7,8,9-Hexa CDF	0.1	0.1
2,3,4,6,7,8-Hexa CDF	0.1	0.1
1,2,3,4,6,7,8-Hepta CDF	0.01	0.01
1,2,3,4,7,8,9-Hepta CDF	0.01	0.01
1,2,3,4,6,7,8,9-Octa CDF	0.001	0.0003

2,3,7,8-Tetrachlorodibenzofuran

PCDD/F Sources: Canada and USA

CANADA

1999	2014
83	20
36	7
34	4
16	1
9	23
7	0.3
5	2
4	4
4	0
3	2
3	3
1	0,4
0.3	
204	68
	1999 83 36 34 16 9 7 7 5 4 4 4 3 3 3 3 1 0.3 204

Area Burned 2015

Canada: 3.9 mm ha USA: 4.0 mm ha

Wildfires: USA

1987:	940g TEQ
1995:	1300g TEQ
2000:	4600g TEQ

Wildfires in Canada likely produce >10x more PCDD/F than all other sources combined!

USA

(PCDD/F g TEQ /yr)	2000
Residential Wood Burning	510
Medical Waste Incinerators	378
Non-incinerated waste	90
Municipal Waste Incinerators	84
Power Generation	88
Vehicle Fuel Combustion	106
Metallurgical Processes	44
Cement Kilns	38
Industrial Wood Burning	42
Chemical Production	34
Hazardous Waste Incinerators	6
Petroleum Refining (catalyst)	2
Pulp and Paper	2
Other	2
Total	1425

Canada has a lot less people than the US but about the same amount of trees!

Dioxin and Furan Levels from Wildland vs. Urban Wildfires

Dioxins & Furans from Forest Wildfires

Dioxins vs. Furans? Toxicity (TEQ)?

Both variable depending on what is being burned PCDD TEQ - PCDD Total 800 16 -ZZZ PCDF TEQ - PCDF Total CDD/F PCDD/F TEQ (ng/kg_{Cb}) 12 600 ⁻ Total (ng/kg_{cb}) 400 200 200 8 For Oregon forest biomass: 0 All Forest CNC WNC OR 0 Equal mass PCDD & PCDF KBG CA FL TEQ for PDCF 2x that of PCDD. **Biomass Source**

Comparison: Dioxins/Furans from Forest & Grassland Controlled Burns

- Amount of PCDD/F produced from forest biomass is >> original content.
- Bulk of PCDD/F go to atmospheric emissions.

Sediment: From a 1998 Northern Alberta Wildfire

- Sediment dioxin/furan levels indistinguishable from background
- True for both total sediment and sediment carbon (TOC)

Congener Profiles

- Dioxins composed primarily of Octa CDD, followed by Hepta CDD
- Furans and other dioxins present at lower levels

2007 California Urban/Wildland Wildfire

- Highest values found near burned homes.
- PCDD/F significantly exceeded levels reported for forest wildfires in the literature.
- Authors suggest ambient levels could be affected.
 - > Danger of interpreting wildfire PCDD/F as industrial contamination.

House Results

- Low toxicity houses still have 1000x the levels of total PCDD/F per kg soil/ash than seen in N. Alberta wildland wildfires
- Congener proportions for houses 1, 2 and 3 are similar and consistent with N. AB. woodland wildfire profiles
- Congener proportions for houses 4 and 5 are different. Less OCDD, more HxCDD and Furans

House Results - Toxicity

Houses 1&2: both mass and toxicity data are low and consistent with wildland fire data

House 3: toxicity due to high mass of total PCDD/F – 400x higher than low toxicity house

House 4: toxicity due to high mass of total PCDD/F (100x) and disproportionate amount of one toxic HpCDF

House 5: toxicity due to disproportionate amounts of a toxic PeCDF and all four HxCDF

2007 California Urban/Wildland Wildfire - Conclusions

- In urban wildfire impacted areas, high concentrations of dioxins/furans including TCDD don't necessarily imply industrial activity.
- Authors suggest ambient levels could be affected, which should be considered in future assessments in the area.

Watershed Transport Considerations

Evaluation of sediment movement within a watershed pre- and post-fire

Sediment concentrations and mass flux increased by 3 orders of magnitude postfire Loss of vegetation and changes in soil properties <u>greatly increased</u> <u>the magnitude of storm runoff</u>, resulting in sediment-laden stormwater carrying <u>high concentrations of</u> particulate-bound contaminants

Sampling & Analysis Considerations

Sampling Requirements

Sample Matrix	Sample Container	Minimum Sample Size	Storage
Water (EPA 1613)	2 x 1-L pre-cleaned amber glass bottle; Teflon [®] lined cap	2 L	<4° C (Na ₂ S ₂ O ₃ if chlorinated; H ₂ SO ₄ if pH >9)
Soil/Ash (EPA 8290)	1 x 250 mL pre-cleaned amber glass bottle; Teflon [®] lined cap	100 g	<4°C (frozen preferred)
Tissue (EPA 8290)	1 x 250 mL pre-cleaned amber glass bottle ¹ ; Teflon [®] lined cap	100 g	Frozen
Air (EPA TO-9/Method 23)	Glass Fibre Filter/PUF Plug (EPA TO-9) XAD Resins/Impinger Fluids (EPA Method 23)	N/A	<4° C

¹ Sample container may be sample dependent; important to ensure container is "background free"

Field Quality Assurance

Ideally, have a documented Quality Assurance Project Plan (QAPP) agreed to by all parties;

At a minimum, flag field contamination

Field QC

- Equipment Rinse Blanks
- Trip Blanks (remain sealed)
- Field Blanks (open at site)

<u>Field Spikes</u> – typically only for water samples

Field Duplicates

- Understand sample heterogeneity
- Typically high for soils

May also want to consider:

Contamination at urban wildfire sites is very uneven:

- Multiple samples per building site
- Composite sampling
- Grid Sampling

Analytical Methods

** IF IT IS AN ASH SAMPLE, SPECIFY THAT CLEARLY ON THE COC

Soil mineralizes during fire, resulting ash traps PCDD/F in its crystalline structure. Need acid digestion to remove - solvent only elutes from the particle surfaces.

PCDD/F Clean-up Protocol

Acid Backwash

• Remove oxidizable compounds: lipids, PAHs, some OCPs

Mixed Bed Silica Column

- <u>Acidic</u> remove additional oxidizable compounds, which are mostly oxidized to acids
- <u>Basic</u> remove acid species produced above plus phenols
- <u>AgNO₃</u> remove organic sulphur compounds, & olefins
- · possibly additional steps if beds above are overloaded

For heterogeneous samples, different steps or numbers of steps may be performed on different samples in batch.

Alumina Column

Removes most PCBs

Activated Charcoal

Column

• Removes co-planar PCBs

Laboratory Quality Assurance

- Laboratory Quality Control (QC) Samples
 - Method Blanks
 - Blank Spikes/Blank Spike Duplicate
 - Sample Duplicate
 - Matrix Spike/Matrix Spike Duplicate

Method Blanks & Spikes are processed according to the most strenuous cleanup required for the batch.

Recoveries in any specific sample in a job could be better than shown for spike recoveries in the QA report.

- TCDF Confirmation required
 - 2,3,4,7-TCDF, 2,3,7,8-TCDF, 1,2,3,9-TCDF co-elute in the standard instrument set-up
 - If a positive is seen for 2,3,7,8-TCDF, re-inject with a different instrument set-up to confirm

If 2,3,7,8-TCDF is reported >EDL, ensure you are referring to the 'TCDF Confirmation' data when interpreting the report, contribution from non-toxic congeners can be significant.

Toxic Equivalency – Treatment of EDL Data

		Calculated EDL	Sample Result	NATO TEF	Toxic Equivalency
	2,3,7,8- Tetra CDD	1.7	2.3	1	2.3
xins	1,2,3,7,8- Penta CDD	3.2	<3.2	0.5	1.6
	1,2,3,4,7,8- Hexa CDD	2.8	4.3	0.1	0.43
<u><u>0</u></u>	1,2,3,6,7,8- Hexa CDD	2.9	<2.9	0.1	0.29
	1,2,3,7,8,9- Hexa CDD	4.6	5.2	0.1	0.52
	1,2,3,4,6,7,8- Hepta CDD	6.6	8.2	0.01	0.082
	1,2,3,4,6,7,8,9- Octa CDD	15	48	0.001	0.048
	2,3,7,8- Tetra CDF	1.9	<1.9	0.1	0.19
,	1,2,3,7,8- Penta CDF	2.2	<2.2	0.05	0.11
	2,3,4,7,8- Penta CDF	3.1	<3.1	0.5	1.6
	1,2,3,4,7,8- Hexa CDF	2.9	3.6	0.1	0.36
l n	1,2,3,6,7,8- Hexa CDF	4.3	6.3	0.1	0.63
lra	1,2,3,7,8,9- Hexa CDF	4.2	<4.2	0.1	0.42
ц	2,3,4,6,7,8- Hexa CDF	5	<5	0.1	0.5
	1,2,3,4,6,7,8- Hepta CDF	4.6	<4.6	0.01	0.046
-	1,2,3,4,7,8,9- Hepta CDF	3.6	5.3	0.01	0.053
	1,2,3,4,6,7,8,9- Octa CDF	9.2	60	0.001	0.06
	Тохі	9.24			

Units = pg/g

Note that the two toxic penta CDD/F congeners

reported at <EDL comprise 1/3 of total sample TEQ 26

Example Report:

• All results <EDL were assigned, in this case, at the absolute value of the EDL.

Treatment of <EDL-results need to be set-up ahead of time:

- At EDL: worst case scenario.
- Half DL: typically used for brownfield assessments.
- Zero DL: likely underestimates site toxicity.

Recommendations

Urban Wildfire Assessments - Recommendations:

- 1. Urban wildfire sites can <u>sometimes</u> have significantly higher mass loadings and TEQ relative to wildland wildfire sites.
- 2. Conduct appropriate field QC to avoid biasing data due cross-contamination from PCDD/F hotspots.
- 3. When submitting ash samples, clearly state this on the COC
- 4. When testing in burned areas after an urban wildfire, take multiple or composite samples at each property site to get a representative TEQ value expect variable PCDD/F loadings on the property.
- 5. Consider the possibility of elevated ambient background in historic urban wildfire sites.
- 6. Consider sediment flow paths downstream of urban wildfire sites.
- 7. Understand whether reports are biasing TEQ data low or high, depending on how <EDL data are handled.

Sources

Deardorff, Thomas L.; Karch, Nathan J.; Holm, Stewart E. Dioxin levels in ash and soil generated in southern California fires, Organohalogen Compounds (2008), 70, 2284-2288.

Gullett, B.; Touati, A.; Oudejans, L PCDD/F and aromatic emissions from simulated forest and grassland fires, Atmospheric Environment (2008), 42(34), 7997-8006.

Gabos, S.; Ikonomou, M. G.; Schopflocher, D.; Fowler, B. R.; White, J.; Prepas, E.; Prince, D.; Chen, W. Characteristics of PAHs, PCDD/Fs and PCBs in sediment following forest fires in northern Alberta, Chemosphere (2001), 43(4-7), 709-719.

M. P. Burke, T. S. Hogue, A. M. Kinoshita, J. Barco, C. Wessel, E. D. Stein. Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California, Environmental Monitoring & Assessment (2013) 185:10131–10145

Thank you!

Contact Us:

Heather Lord Manager, Environmental R&D hlord@maxxam.ca 905-817-5711 Terry Obal Director, Scientific Services & Development tobal@maxxam.ca 905-288-2174

science@maxxam.ca www.maxxam.ca

