Field Remediation Trials for Sulfolane Impacted Soil and Groundwater: Aeration, Nutrient Amendments and/or Peroxide?

RemTech 2016

Brent Lennox, M.Sc., P.Geol., Senior Hydrogeologist
Eric Pringle, M.A.Sc., P.Eng., Principal Hydrogeological Engineer Waterline
Waterline Resources Inc.

Sulfolane

- Used in Sulfinol for sour gas sweetening since 1960s
- Human health related guidelines
- Poorly adsorbed to soil
- High solubility in water
- Microbial degradation slow in typical groundwater conditions
- Clear, colourless, no field indicators (visual or olefactory)

Sulfolane

- Microbial degradation rapid in aerobic environments and surface water (CCME, 2006)
 - $C_4H_8O_2S + 6.5O_2 \rightarrow 4CO_2 + 3H_2O + 2H^+ + SO4^2$
 - Nutrients improve degradation times
 - Low pH conditions inhibit degradation
 - Typical degradation times: 2 to 4 days at 28°C and 8 to 12 days at 8°C (Green et al., 1998), average air temperatures during trials ranged from 6.9 to 14.1°C

Sulfolane: Previous Remediation Approaches

Groundwater and Soil

Oxygen and nutrients (soil tilling, blowers) (Biogenie, 2006)

Groundwater

- Activated Sludge Treatment System (WorleyParsons Komex, 2008)
- Oxidants (e.g., hydrogen peroxide) and/or UV light
 - Mixed success (Barr Engineering, 2013; Gallegos et al., 2013; EBA, 2015)
 - Peroxide and iron catalyst shown to be more effective than peroxide (Gallegos, 2013)
 - No sulphate as by-product

Site Description

- Site is an operating gas plant located in southern Alberta
- Constructed in 1960s
- Sulfolane investigation and monitoring since 1994

Landfill Area: History

- No active facilities
- Downgradient of active facilities
- Majority of plant waste stored here before the 1980s
- Potential materials disposed: alumina catalyst, filters (compressor, sulfinol, salt water, glycol, solvent receiver), zeolite, etc.
- Cells (but likely not soil) excavated in 1993

Landfill Area

- Predominately sulfolane and EC (sulphate) issues
- Currently >10,000 tonnes of sulfolane impacted soil
- Impacts extend into groundwater and bedrock around former landfills

Soil Impacts	Water Impacts
Sulfolane	Sulfolane
Electrical Conductivity (EC) (predominately sulphate)	Sulphate
Minor DIPA, hydrocarbon, elemental sulphur impacts	DIPA

Site Setting

Soil Remediation: Trials

- Control
- Aeration
- Aeration and Nutrient Amendment
- Hydrogen Peroxide

Soil Remediation: Methods

- Treated ~10 m³ impacted soil/test cell
- Excavated and stockpiled treated soil for 11 days
- Lined and backfilled test cells after 11 days
- Sets of 5 soil samples collected ~3 to 45 days after remediation activities

Soil Remediation: Control

- Heterogeneous sulfolane concentrations
- Potential outliers

Soil Remediation: Soil Oxidative Blender

- Two hammer mills and rotating augers to homogenize soil
- Timeline: Hours to complete, issues with wet silt during trials not typically encountered with clay

 Trials included:
 - Aeration
 - Aeration/nutrient amendment
 - Hydrogen peroxide/UV

Soil Remediation: Soil Oxidative Blender Aeration

Soil Remediation: Soil Oxidative Blender Aeration and Nutrient Amendment

- N:P:K ratio28:14:14, 200mg/kg dose
- Identical results
 to aeration only
 indicate that the
 fertilizer
 application did
 not have a
 measurable
 influence

Soil Remediation: Soil Oxidative Blender Aeration, Hydrogen Peroxide and Natural UV Exposure

- 11% hydrogen peroxide with citric acid stabilizer,
 1,000 L applied to ~10 m³ soil
- Hydrogen peroxide is a disinfectant in other applications, possibly reduced naturally occurring microbe population

Soil Remediation: ALLU Bucket/Nutrient Amendment

Aerated twice with Allu bucket

N:P:K ratio 28:14:14, 200 mg/kg dose

20 minutes to complete remediation

Soil Remediation: ALLU Bucket/Nutrient Amendment

Soil Remediation: Summary

- 97 to 98% reduction in sulfolane concentrations using aeration and/or nutrient application
- ALLU Bucket trial concentrations after treatment <Tier 1 guidelines
- Peroxide application: No apparent remedial benefit

Groundwater Remediation

- Groundwater trials completed opportunistically
- Test cells excavated into shallow bedrock
- Test cells left open for ~1 week while completing soil trials
- <24 hour duration groundwater trials</p>
- Approaches:
 - No treatment (Control)
 - Aeration with trash pump
 - Sparging
 - Hydrogen peroxide

Pumping test completed and test pit went dry after storage within test pit was pumped off

Groundwater Remediation: No Treatment

Groundwater Remediation: Aeration with Trash Pump

- Re-circulated pit water ~9 times
- Nitrate in groundwater present before and after trial (8 to 9 mg/L)

Groundwater Remediation: Sparging

- Regenerative blower with slotted pipe, 6 hours
- Non-detectable nitrate in groundwater not favourable for microbial degradation of sulfolane?
- > Trial too short or the entire water column not aerated?

Groundwater Remediation: Hydrogen Peroxide

- 11% hydrogen peroxide with citric acid stabilizer, 1,000 L hydrogen peroxide added to 1,000 L of groundwater
- Groundwater diluted by half initially, excluding dilution=minor remedial benefit

Groundwater Remediation

Findings

- Peroxide/exposure to natural UV light generally not as effective as aeration/nutrient amendment approaches
- Simple, practical, and cost effective approaches can be taken to remediate sulfolane in soil and groundwater
 - Soil: aeration/nutrient amendment
 - Groundwater: water re-circulation/aeration
- Due to the site setting and potential for groundwater recontamination, a groundwater remediation approach should be applied

Questions?

Thank You

Brent Lennox
Eric Pringle
Waterline Resources Inc.

http://www.waterlineresources.com

References

- Barr Engineering, July 31, 2013. Revised point-of-entry treatment system feasibility study and design report.
- Biogenie, 2006. Large Scale Sulfolane-Impacted Soil Remediation at a Gas Plant. Remediation Technologies Symposium Presentation, Banff, AB.
- CCME, 2006. Canadian Environmental Quality Guidelines for Sulfolane: Water and Soil. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba.
- EBA Engineering Consultants Ltd., 2015. Sulfolane Impacted Soil and Groundwater Treatability Study. Remediation Technologies Symposium Paper, Banff, AB.
- Gallegos, P.G., Fitzhenry, T., Moody, W., November 12 to 14, 2013. Successful Chemical Oxidation Treatment of Sulfolane. IPEC Presentation.
- Greene, E.A., Gieg, L.M., Coy, D.L., Fedorak, P.M., 1998. Sulfolane Biodegradation Potential in Aquifer Sediments at Sour Natural Gas Plant Sites. Water Resources, 32: 3680-3688.
- WorleyParsons Komex, 2008. Remediation of Sulfolane Impacted Groundwater Characterization, Treatment and Disposal. Remediation Technologies Symposium Presentation.

