

Harnessing Wind Power For Remediation Via Soil Vapour Extraction In Remote Areas

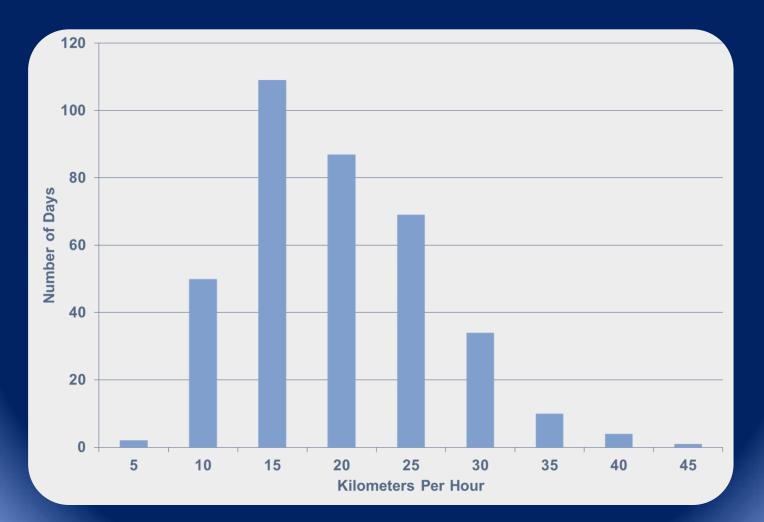
Remtech, 2016 Banff, Alberta

Anthony Knafla, M.Sc., DABT lan McIvor, M.Sc., P.Biol Project Supported by :

Objective and Outline

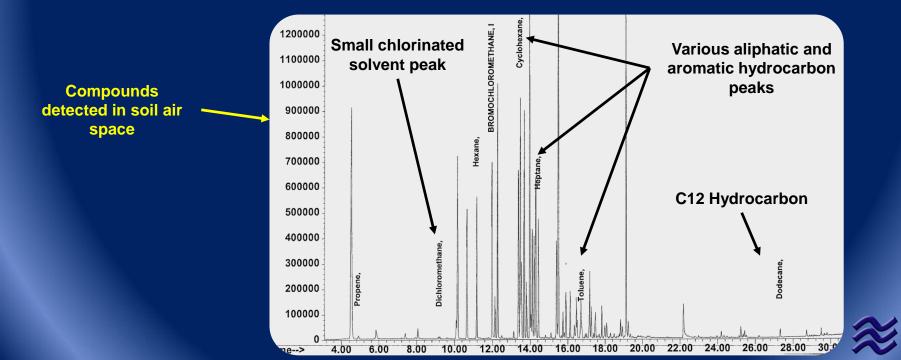
- OBJECTIVE:
 - Provide a lower carbon footprint process for extracting vadose zone subsoil volatile organic chemicals in remote areas
- OUTLINE:
 - Site Characteristics
 - Environmental characteristics
 - Nature and distribution of chemical impacts
 - Remediation endpoints
 - Vapour Collection & Treatment System
 - Vapour wells
 - Renewable power subsurface soil air pumps (windmills)
 - Vapour storage and processing
 - Power system and instrumentation
 - Treatment system
 - Year round operation solutions
 - Results and Conclusions
 - Volatile organic chemical mass extraction rates
 - Carbon footprint
 - Estimate time to cleanup

LOCATION:


- Rural area of Alberta
- Local region being returned to a native pasture ecozone
- Low impact footprint approaches are preferred
- No readily available power source requires remote source

• CLIMATE:

- Warm summers, cold winters, humidity generally low
- Temperatures may reach 30 °C in winter
- Decent wind speeds on average

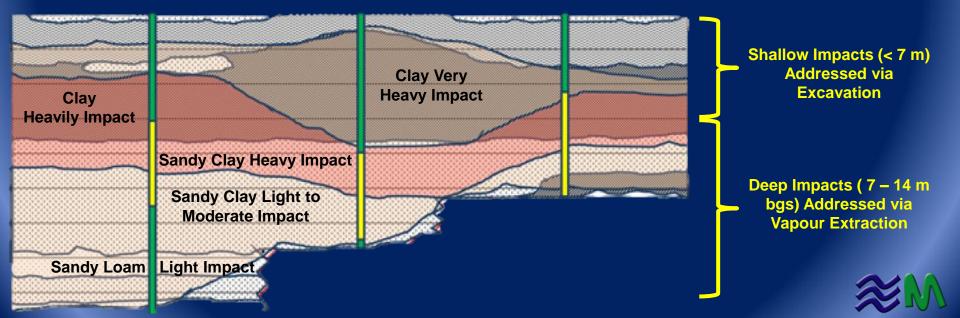


Site Characteristics NATURE OF CONTAMINANT IMPACTS:

- Non-sour gas well and condensate (gasoline range hydrocarbons)
- Solvent impacts due to cleaning operations
- Impacts in ground appear related to tank location and pit box
- Typical volatile organic chemicals (VOCs) in soil air space
 - GC/MS analysis, < C₁₄, aromatic and aliphatic, with chlorinated organics and ketones in some samples
- REMEDIATION ENDPOINT:

0

 Site-Specific Risk Assessment (SSRA) Human and Ecological Health Soil Remediation Guidelines

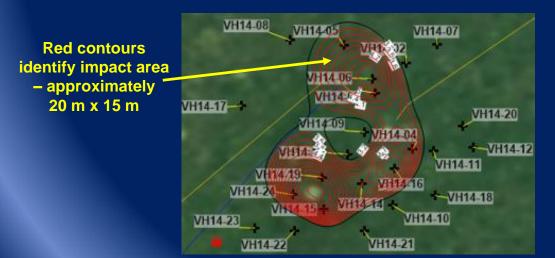


• LITHOLOGY:

- Heterogeneous lenticular distribution of soil layers
- Unsaturated soils to soil depth 20+ m bgs

• VERTICAL IMPACT DISTRIBUTION:

- Heavier molecular weight (MW) chemical impacts primarily in 7 m bgs fine textured soil
- Lighter MW chemical impacts at 7 to 14 m bgs
- Lighter MW chemicals broke through to deeper depths smaller Kd values, less soil adsorption
- Relatively huge pit would be required if all impacts excavated



Vapour Collection & Treatment System

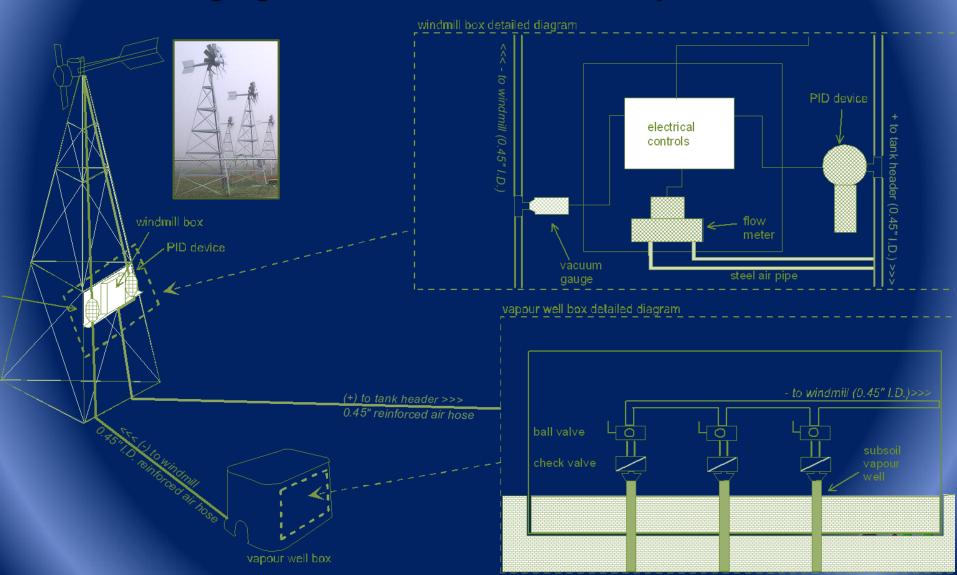
• VAPOUR WELLS:

- 24 Single or triple nests (>60 individual wells in total)
- 10 positive pressure air supply wells surrounding impact
- 14 negative pressure air extraction wells within impact
- Pilot test conducted for well spacing wells spaced at ~5 m lateral offset (well center to center); constrained by structures
- Nested well screens were required due to distinct lithologies
 - Allowed for optimization of extraction
 - Units that produced minimal vapours could be shut off until they re-bound or are recharged by the positive pressure wells
- Nested wells were installed within a single
 6" diameter auger hole

Different screen depths across distinct soil lithology with different permeability values

• WINDMILLS:

- structures from Koenders Windmills Inc. in Saskatchev - Canadian company in operation since 1988
- Dual diaphragm design, very functional at low & high wind speeds
- Windmill feet anchored in concrete, easily installed by 3-4 workers
- Optically pleasant agricultural style
- Vapour storage vessel with pressure specifications
 - Contains organic vapours before treatment
- Fenced site to prevent human/livestock/wildlife 'interactions' with equipment and vapours



• **GENERAL LAYOUT:**

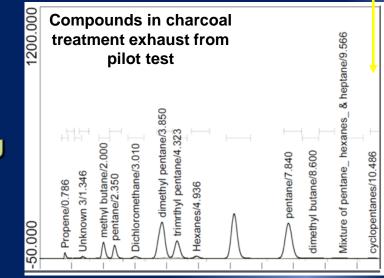
- concentration measurement and air flow for mass calculations
- Vacuum gauge for *in situ* air mass availability limits

• POWER SYSTEM:

- Small diesel generator with integrated fuel tank
- Large bank of rapidly charging batteries
- Genset run for 1.3 hours per day in summer, spring and fall; average 3.8 hours in winter (cold battery charging)
- Intermittent operation

• INSTRUMENTATION:

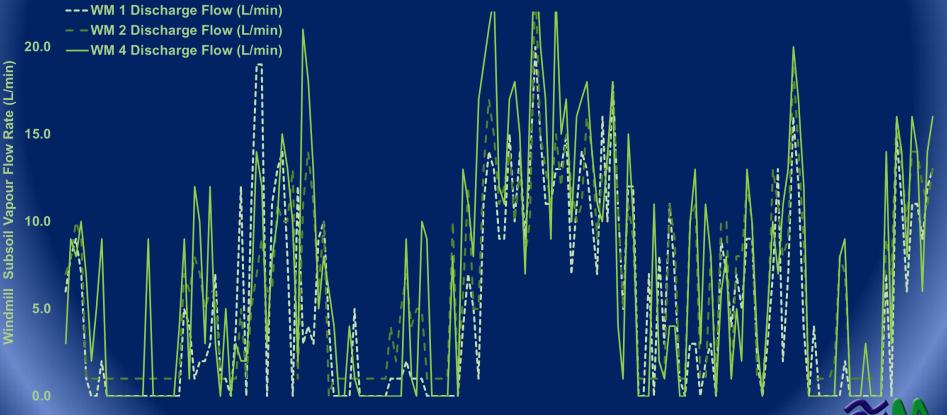
- Inline Photo Ionization Detector (PID)
- Inline flow meter
- Inline vacuum gauge
- Dome cameras (infrared night)
- Storage tank flow meter
- Storage tank pressure gauges
- Genset conditions (temp, etc.)
- SCADA communication system
 - Cellular (or satellite) network
 - Real time data and photos, pressures, PID, flows
 - Controllable remotely

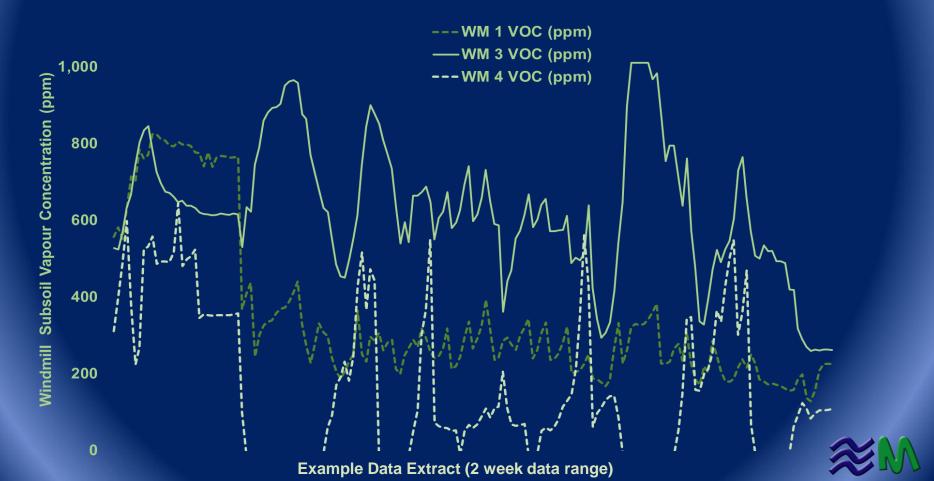


Treatment System

- TREATMENT OPTIONS:
 - thermal oxidation, catalytic oxidation, condensation, carbon adsorption, resins adsorption, biological degradation
 - Activated charcoal tested, found inadequate breakthrough in pilot tests (GC analysis of exhaust) - charcoal rapidly saturated

• SELECTED OPTION:


- Thermal oxidation via co-combustion selected
 - Advantage already consuming diesel to charge battery bank
 - Lower VOC airstream/engine intake mixing ratio of 1:20 produced negligible emissions; 1:10 ratio more notable emissions
 - VOCs represent approximately 0.38% of the fuel for combustion (mass/mass)
 - Gas powered engine could take advantage of VOC combustion, but would require a concentrating step - minimal net advantage


Results and Conclusions

- Windmill pumping rates are time-variable as a function of wind speed and direction
 - SCADA allows early diagnosis of windmill seal leaks or other mechanical issues (flow rate drops relative to other windmills)
 - Typical flow rates were > 15 L/min in high wind; 5 to 15 L/min in moderate wind; and 1 to 5 L/min in low wind (per windmill)
 - Acceptable operation under low wind speed conditions

- Extracted subsoil VOC concentrations were variable over time, wind speed, extraction duration, and between well locations
 - Depletion of subsoil air space occurred in some well screens
 - Intermittent pumping rates of windmills acts as a natural surging system that allows for recovery and rebound of vapours
 - Concentrations ranged from 100 to ~1000 ppm

- MASS RECOVERY AND REMEDIATION TIME TO ENDPOINT:
 - Concentration range of 100 to 1,000 ppm
 - PID correction required chemical specific
 - ppm to mg/m3 correction required chemical specific
 - Conservative site-specific calculation: 100 ppm = 1,040 mg/m³ (2.6-fold correction for PID (e.g., n-heptane) and 4.0-fold for ppm to mg/m³ (e.g. n-heptane)
 - Actual correction factors more complicated and less conservative
 - Approximately 2,520 kg of liquid product equivalent needs to be removed to achieve the SSRA-based remediation guidelines
 - Each windmill extracting approximately 0.1 kg/day
 - For n=5 windmills, extracting 14.5 kg/month of liquid product or ~174 kg/year (or 312 L/year)
 - Time to remediate with 5 windmills = 14.5 years
 - Currently adding 5 more windmills (total of 10) time to remediate expected to reduce to approximately 7.25 years

- CARBON FOOTPRINT REDUCTION FOR WIND VERSUS ELECTRIC:
 - estimated by comparing power and fuel demand from electrical vacuum pump and generator (gas or diesel) in lieu of windmills
 - 3 CFM electric vacuum pump, 3.4 A @120VAC (~= 5 windmills)
 - Operating 24 hours per day, 365 days per year
 - Equivalent to 404 Watts
 - CO₂ emission reduction of 3,540 kg to 8,370 kg/yr depending on power source (most efficient is diesel genset at low load)

Vapour Pump	Power Source	Average Flow Rate (CFM)	Power Draw (A @120VAC)	Fuel Consumption (L/year)	CO ₂ Emission Reduction (kg/year) ⁽¹⁾
Windmills (n=5)	Wind	2.9	NA	NA	NA
Electrical Vacuum Pump (3.4 A)	Gas Generator (Powerhouse 500 (450 W rated); 0.41 L/hr)	3	3.4	3573	8370
	Diesel Generator (18 kW Prime; Iow Ioad; 1.7 L/hr)			1322	3543

(1) – excludes emissions associated with fuel transport

Conclusions

- The use of dual diaphragm pumps mechanically operated via windmills is an effective means of vapour extraction
 - Produced on average approximately 3 cfm, 24 hours per day, all year round, based on 5 windmills, extracting vapours from depths of up to 15 m bgs
- The use of a small genset with a substantive battery bank can be used to maintain operation of SCADA system components (including cameras, heavy instrumentation data feedback, as well as remote control) year round even in cold climates,
 - Genset can serve as a source of vapour treatment when flow rates are optimized
- Use of windmills can notably reduce the carbon footprint of soil vapour extraction systems
 - Between 3,540 and 8,370 kg/year of CO₂ emission reduction can be reasonably achieved (excludes additional emissions due to additional fuel transport requirements)
- Significant vapour extraction can be achieve with even a small scale windmill setup

