Determination of Local Background Concentrations in Groundwater at an Industrial Site

Dissolved Arsenic, Iron and Manganese

October 15, 2016

Stantec

About the Presenter.....

Tyler Joyce, C.Tech

Project Manager – Stantec Consulting

13 years experience in Contaminated Site Investigations.

- British Columbia Institute of Technology, Environmental Engineering 2009 – 2010, Bachelor of Technology
- British Columbia Institute of Technology, Chemical Sciences, 1999 – 2000, Certified Technician.

1.Site Background

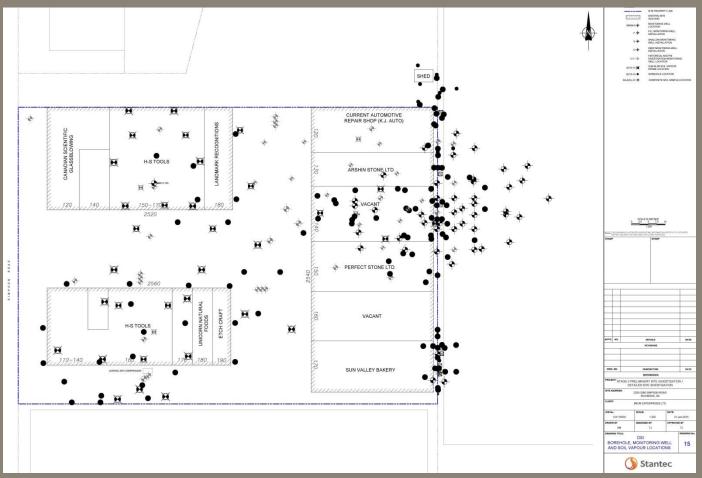
2. BC Contaminated Site Regulations

3. Research and Literature Review

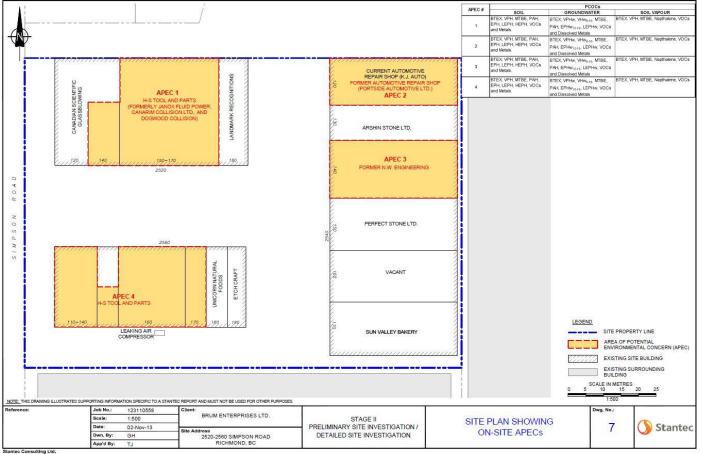
4. Field Data Supporting Protocol 9 Determination

1. Site Background

History


- Light commercial multi-tenanted facility located in the lower mainland region of British Columbia
- Multiple areas of environmental concern to be investigated
- Potential for contamination in soil, groundwater and soil vapour to be present

Site Investigation Locations

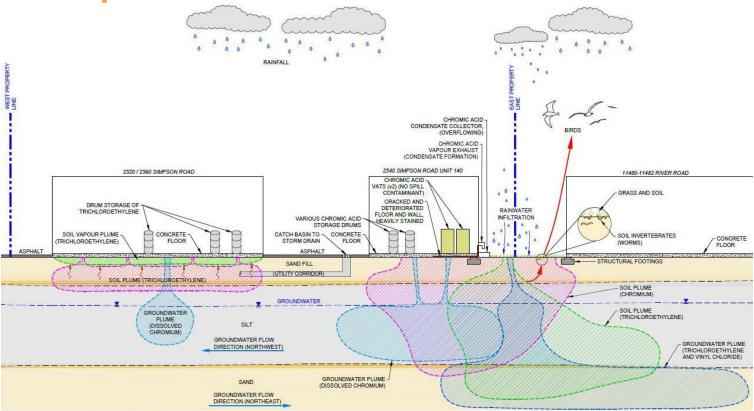

1. Site Background

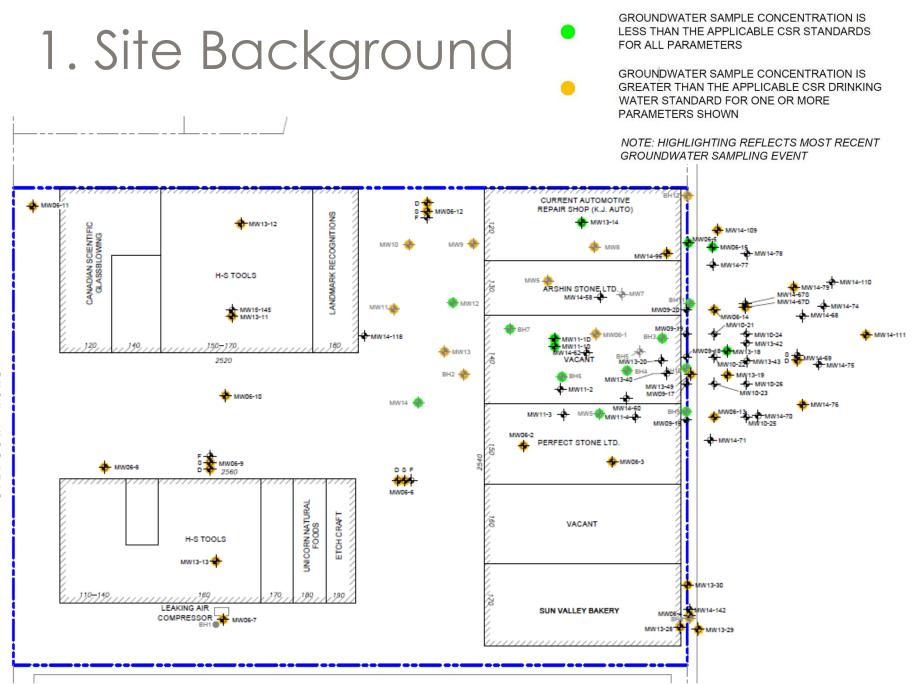
Environmental Investigations completed for the Site included:

- Stage 1 Preliminary Site Investigation
- Stage 2 Preliminary Site Investigation
- Detailed Site Investigation
- Detailed Quantitative Human and Ecological Risk Assessment

1. Site Background **Summary of Areas of Potential Environmental** Concern

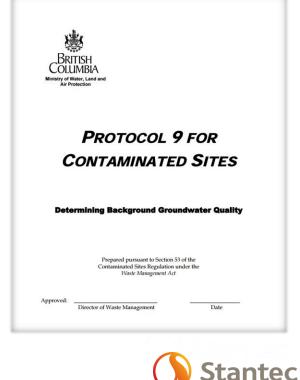
1. Site Background


Summary of Identified Groundwater Contamination



1. Site Background

Stage 2 PSI and Detailed Site Investigation Conceptual Site Model



2. British Columbia Contaminated Site Regulations

- Documents are intended to provide stakeholders with support on navigating the CSR Regulations including:
 - Administrative, Technical and External Guidance documents
 - Protocols
 - Procedures

2. British Columbia Contaminated Site Regulations

- Protocol 9: Determining Background Groundwater Quality
 - Provides procedures to assist remediation at sites were local background concentration of substances are greater than the numerical standards.
 - Concentrations of a substance that occur naturally in a geographic area are considered representative of background conditions.

2. British Columbia Contaminated Site Regulations

- Protocol 9: Determining Background Groundwater Quality
 - Minimum of 3 background wells are required
 - Background wells should be located in same geographical area and in the same groundwater flow system.
 - Background wells should not be located within the area of influence of contamination, they should be cross or up-gradient. On-Site wells can be used.
 - Background wells should be sampled at least twice to demonstrate temporal variability and to ensure a robust data set

2. British Columbia

Contaminated Site Regulations

- Protocol 9: Determining Background Groundwater Quality cont'd
 - Sampling strategy should account for season variability in groundwater conditions
 - Appropriate QA/QC measures should be taken to ensure data validation.
 - Where collective data fall within a single statistical population, the representative local background concentration is the 95th percentile concentration of the data set.

3. Research & Literature Review

- Naturally occurring elevated Iron, Manganese
 and Arsenic in groundwater
- Geochemistry and its effect on metal concentrations in groundwater
- SABCS Conference of Contaminated Sites 2012
- Core6 Environmental Stephen Munzar
- UBC Hydrogeology KIDD 2 Research Site, Richmond, BC – Roger Beckie

Surficial Geology

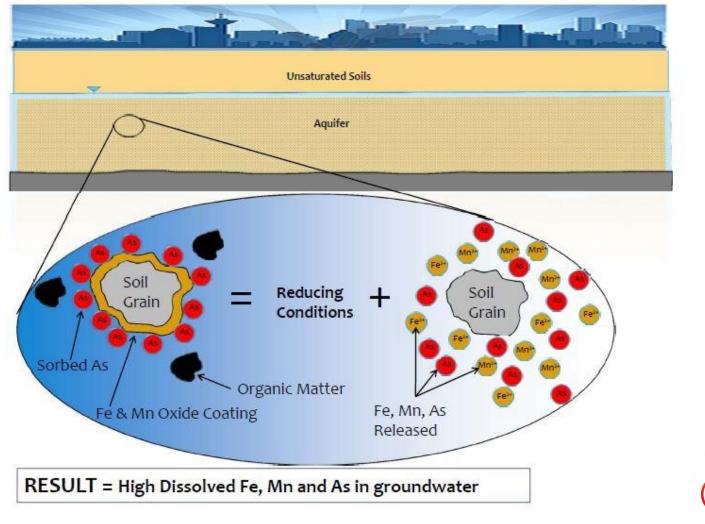
- Deltaic sediments up to 300 m thick
- Made of three sets: deep marine clay, thick sands and silt and clays and silts at base intermittent with organic overbank silts and bog (peat)
- Delta contains high organic matter

Geochemistry

- Sources of Fe, Mn and As
- Dominant species in groundwater
- Aqueous mobility / Solubility Controls

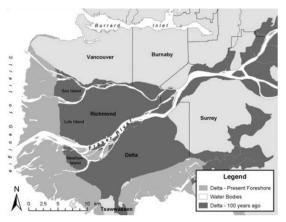
Mechanism of Fe, Mn and As Release into Groundwater

- Natural release cause by reductive dissolution
- Fraser river contains abundant organic
 matter and Fe & Mn
 St


antec

Mechanism of Fe, Mn and As Release into Groundwater

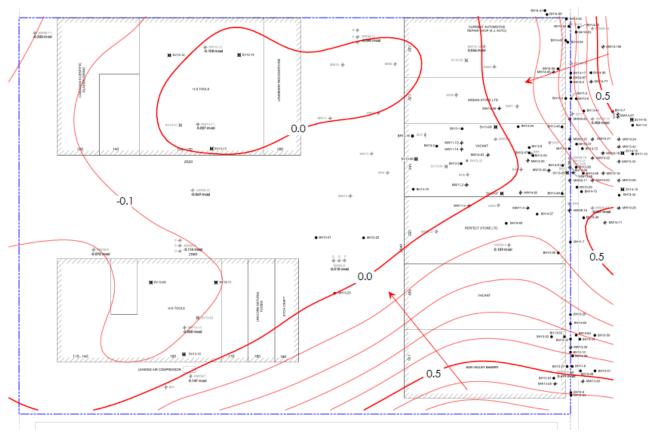
- Arsenic bound/absorbed to Fe and Mn oxide coatings
- Organic matter consumes O₂ producing anaerobic conditions
- Fe/Mn oxide coatings dissolve releasing absorbed As.
- **Result**: groundwater with naturally elevated Fe, Mn and As.


Mechanism of Fe, Mn and As Release into Groundwater

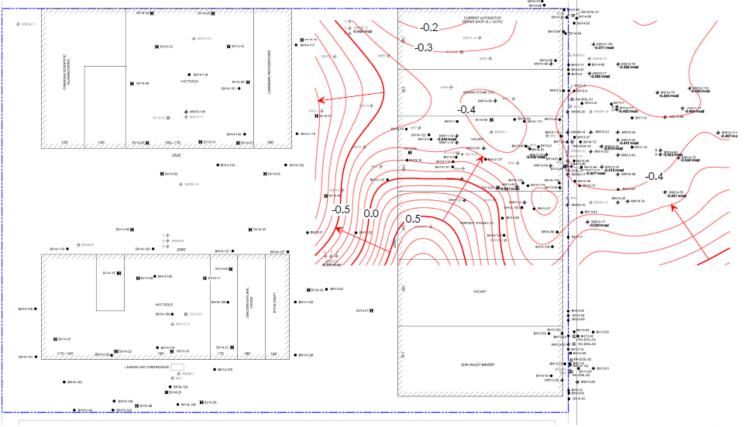
Stantec

Soil Stratigraphy

- Presence of organic material in soils (FOC ranged from 3 – 8% g/g)
- Greater amount present in the silt than in the sand layer
- Geology encountered included Fraser River Delta sands overlain by silt with trace amounts of organics


Hydrogeology

- Tidally influenced groundwater system
- Two distinct hydro geologic zones
- Completed a complex hydrogeology monitoring program
- Groundwater flow direction determined to be northwest in silt
- Groundwater flow direction determined to be
 northeast in sand


4. Field Data Hydrogeology

Groundwater Contour – Shallow Silt Aquifer

4. Field Data Hydrogeology Groundwater Contour – Deep Sand Aquifer

Geochemistry

Groundwater monitoring data showed
 reducing conditions

Field Parameters	Maximum	Minimum	Average
ORP (mV)	5.0	0.1	0.8
DO (mg/L)	6.0	-158.9	-54.9

Notes: ORP – Oxidation Reduction Potential DO – Dissolved Oxygen

Groundwater Analytical Results

• Concentration of Iron, Manganese and Arsenic determined to exceed the CSR standards in multiple monitoring wells over multiple events

Parameter	CSR Standard (µg/L)	Maximum Concentration (µg/L)
Iron	6500	71100
Manganese	550	4180
Arsenic	10	19

Lines of Evidence

- High concentrations of Fe, Mn and As at the Site
- No activities known to introduce these parameters into the environment
- Field data (geology, hydrogeology and geochemistry) to support available research to indicate that this is background
- <u>Hypothesis</u>: Evidence suggests that Fe, Mn and As is likely background

- Selection of Background Wells
- Statistical Analysis of Data Sets
 - Compilation of data Sets (Site vs. Background)
 - Outlier evaluation
 - Statistical Assessment including
 Population Evaluation
 - Determination of 95th Percentile of Background data
 - Comparison of Site data to 95th
 Percentile

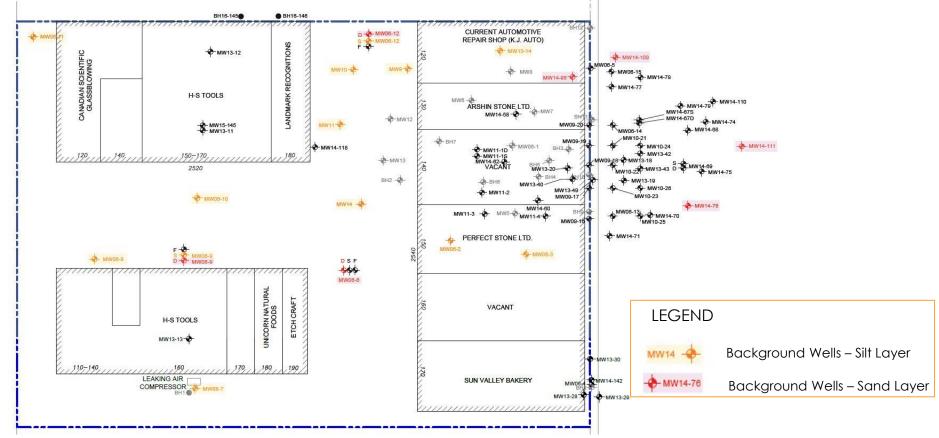
- Site Wells versus Background Wells
- How did we select Background Wells?
 - On-Site Wells were used to determine background concentrations
 - Absence of PCOCs in soil and groundwater analytical results
 - Up Gradient or Cross Gradient of identified AECs
 - Silt versus Sand stratigraphy

- Statistical Assessment using Pro UCL Software to determine the following:
 - Outlier evaluation if outliers are encountered these were removed from the raw data set.
 - Population Evaluation Determine if sample results belong to the same population

- Statistical Assessment using Pro UCL Software to determine the following:
 - Background Determination Determine 95th Percentile of background data set that contained temporal assessment data
 - Background Comparison Compare background concentration to Site data set to determine if contamination is present

Background Monitoring Wells – Silt Layer

MW ID	Iron	Manganese	Arsenic
MW9	Х	Х	Х
MW10	Х	Х	Х
MW11	Х	Х	Х
MW14		Х	Х
MW06-2	Х	Х	Х
MW06-3	Х	Х	Х
MW06-7	Х	Х	Х
MW06-8	Х	Х	Х
MW06-9S	Х	Х	Х
MW06-11	Х	Х	Х
MW06-12S	Х	Х	Х
MW13-14	Х	Х	Х



 Background Monitoring Wells – Sand Layer

MW ID	Iron	Manganese
MW06-6D	Х	Х
MW06-9D	Х	Х
MW06-12D	Х	Х
MW14-76	Х	Х
MW14-96	Х	Х
MW14-109	Х	Х
MW14-111	Х	Х

Selected Background Monitoring Wells

Temporal Assessment – Silt Layer

MW ID	Iron	Manganese	Arsenic
MW9			Х
MW10			Х
MW11			Х
MW14			Х
MW06-7	Х	Х	Х
MW06-8	Х	Х	Х
MW06-11	Х	Х	x

Temporal Assessment – Sand Layer

MW ID	Iron	Manganese
MW06-6D	Х	Х
MW06-9D	Х	Х
MW06-12D	Х	Х

Example Calculation for Manganese

Data Set for Mn
Silt Layer
Background Data
617
793
484
835
878
2790
560
2100
1060
2450
1160
4180
856
1450
1440

Silt Layer		
Site Data		
255	387	
209	87	
236	469	
79	444	
122	1530	
224	426	
238	166	
236	765	
13	1530	
56	463	
996	2730	
187	1780	
226	636	
850	308	
159		

- Example Calculation for Manganese
 - Data Set for Mn

Sand Layer	Sand Layer
Background Data	Site Data
723	201
399	789
972	624
421	171
381	765
178	532
746	828
2740	
532	
2740	

- Example Calculation for Manganese
 - Outlier Test Result
 - Silt Layer no outliers were found
 - Sand Layer no outliers were found

- Example Calculation for Manganese
 - Population Assessment Result
 - **Background Data Set Silt** Pro UCL confirmed that the population of background in the silt layer was normally distributed
 - **Background Data Set Sand** Pro UCL confirmed that the population of background in the sand layer was normally distributed

Descriptive Statistics Results for Mn

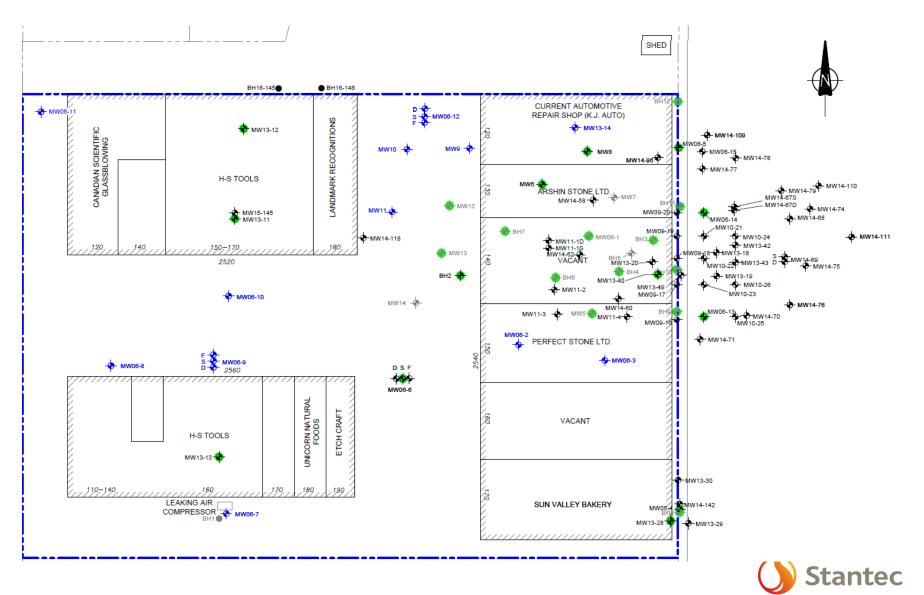
Item	Ν	Min	Max	Mean	SD	Skewness	CV		
SILT LAYER									
Mn-Bkgd	26	2790	1104	705.6	226	1.005	0.639		
Mn-Site	13	1530	353.3	368.8	13	2.124	1.055		
SAND LAYER									
Mn – Bkgd	10	178	2740	983.2	952.7	1.543	0.969		
Mn - Site	8	171	828	527.3	268.9	-0.304	0.510		

 Manganese – 95th Percentile Background Data - Silt Layer

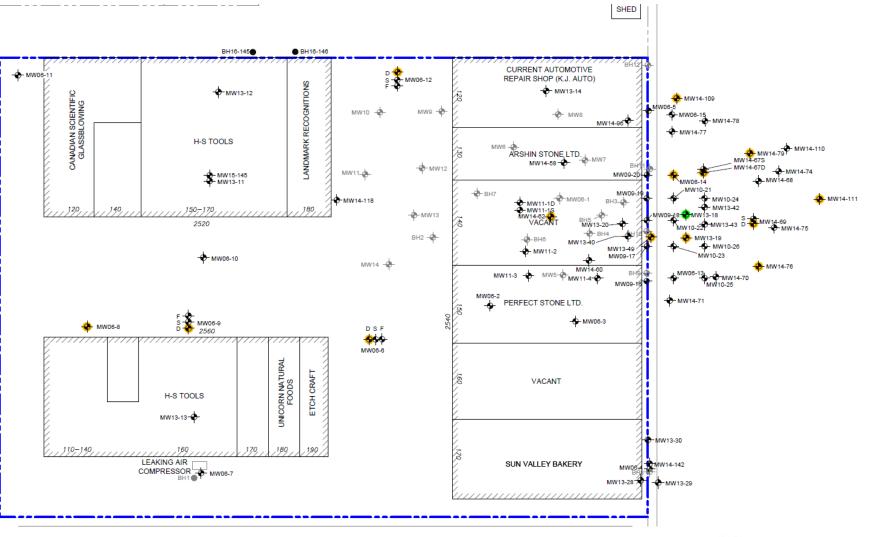
L	₋ocation	MW06-7 94		95th		MW06-11 95th		95th	95th Percentile Based on the 95 Percentile of		
	Date	14-Jun-06	8-Oct-14	Percentile	14-Jun-06	8-Oct-14	Percentile	14-Jun-06	8-Oct-14	Percentile	Background Concentrations
	Mn	2790	560	2679	2100	1060	2048	4180	856	4013.8	<u>3880</u>

 Manganese – 95th Percentile Background Data - Sand Layer

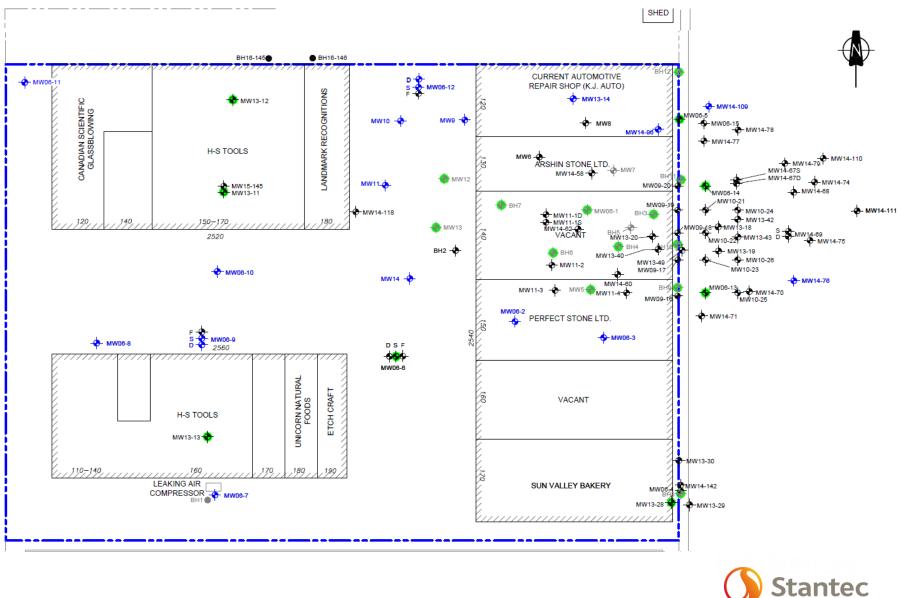
Location	MW	06-6D	95th	MW06-9D		95th	MW06-12D			95th Percentile Based on the 95
Date	14-Jun-06	28-Oct-15	Percentile	14-Jun-06	28-Oct-15	Percentile	14-Jun-06	8-Oct-14	95th Perc.	Percentile of Background Concentrations
Mn	723	399	706.8	972	421	944.5	381	178	370.9	<u>921</u>

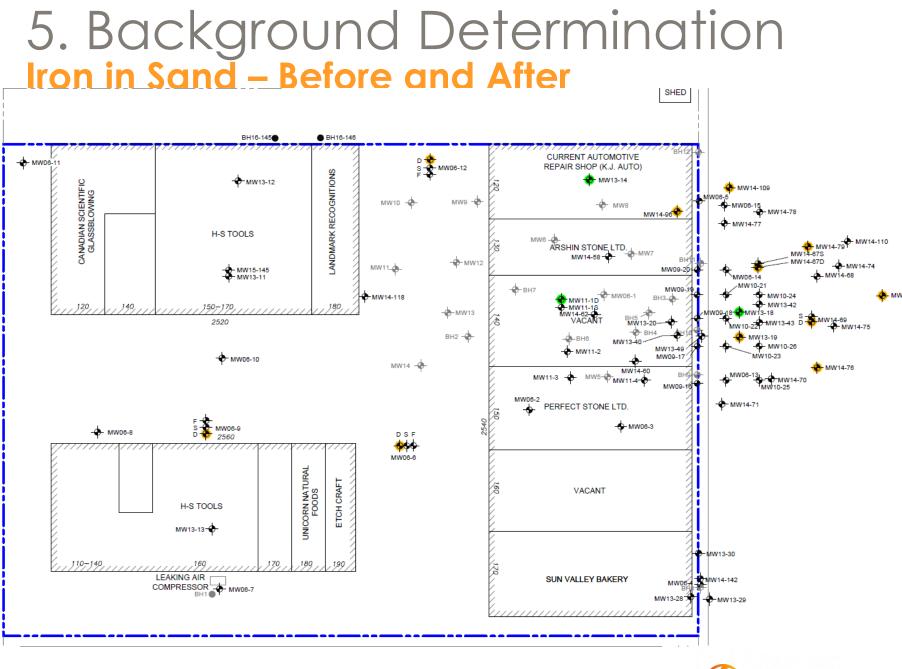


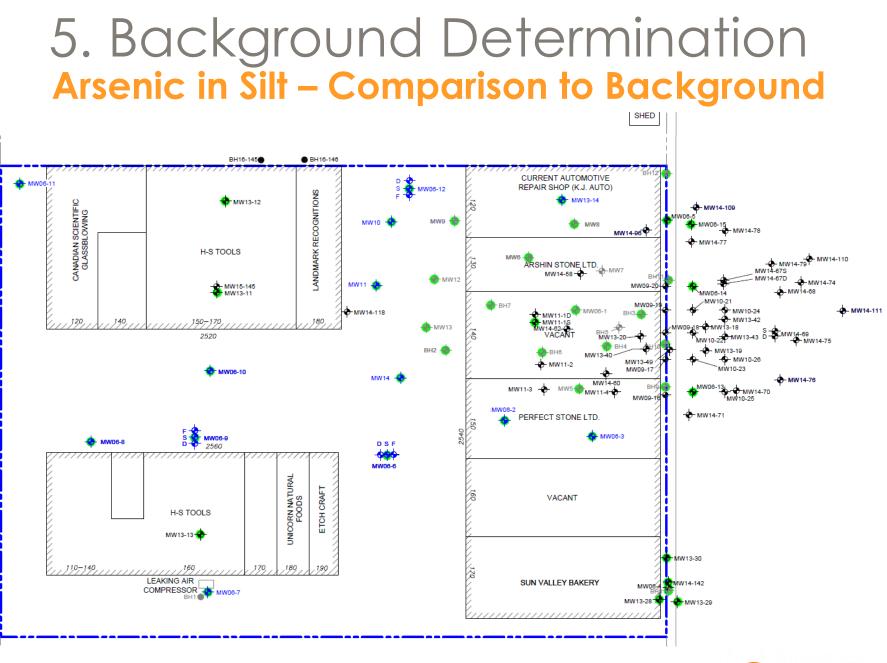
5. Summary


Parameter	CSR Standard (µg/L)	Background Concentration (µg/L)		
Iron – Silt Layer	(500	64858		
Iron – Sand Layer	6500	47130		
Manganese – Silt Layer	550	3880		
Manganese – Sand Layer	550	921		
Arsenic – Silt Layer	10	18		

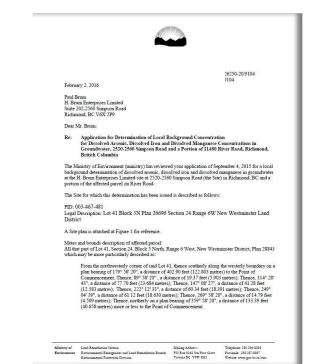
5. Background Determination Mn in Silt Before & After




5. Background Determination Mn in Sand Before & After



5. Background Determination Iron in Silt – Before and After



6. Conclusion

 BC MOE Issued Background Determination for Iron, Manganese and Arsenic for the Site on February 9, 2016

Questions?

Tyler Joyce 778-328-1041 Tyler.Joyce@Stantec.com

