Development of an Amendment Recipe and Identification of Benzene Degraders for Anaerobic Benzene Bioremediation

Wenhui Xiong, Ph.D., P.Eng.

October 14, 2015

Outline

Introduction

2_{Objectives}

3 Materials and Methods

4 Results and Discussion

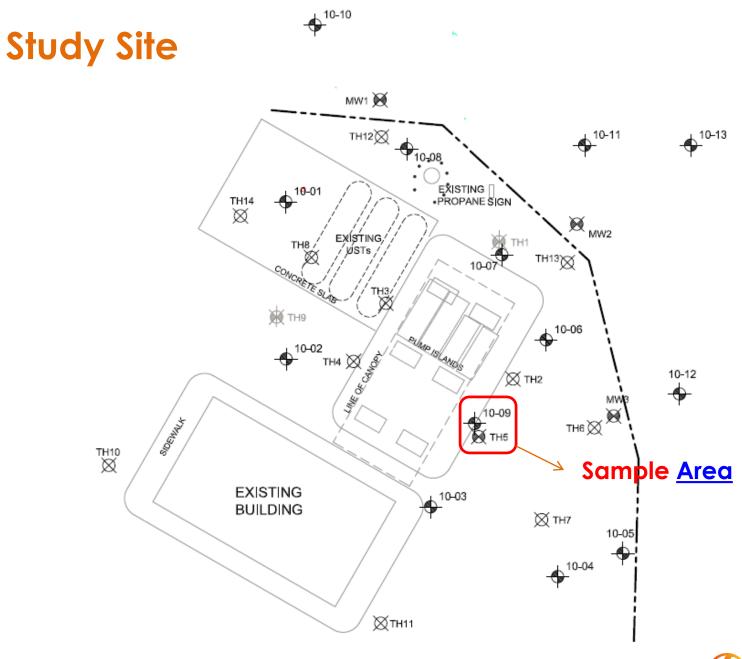
1 Introduction

- Petroleum hydrocarbons (PHC) release into soil and groundwater occur at every stage of oil extraction, refinement, storage, transportation, and disposal.
- Benzene contamination induced by PHC release is a major concern.
 - Highly water soluble (i.e., solubility of 1,791 mg/L at 25°C)
 - Volatile
 - Group A human carcinogen
 - A maximum acceptable concentration of 5 µg/L for benzene in drinking water

1 Introduction

- Benzene is readily biodegradable under aerobic conditions
- Anaerobic subsurface environmental development
 - Fast oxygen consumption rate
 - Slow oxygen supply rate
- Anaerobic reducing conditions typically predominate
- Anaerobic intrinsic benzene biodegradation
 - Occurs very slowly
 - Incomplete
 - Long lag time

1 Introduction


- Enhanced anaerobic bioremediation (EAB) is a practical and cost effective PHC remediation method
 - Biostimulation: addition of nutrients and electron acceptors
 - Bioaugmentation: addition of microorganisms
- Success of biostimulation
 - An effective configuration of nutrients and electron
 acceptors
 - A community structure of dominant microbes
- Understanding the indigenous microbial community is also critical for bioaugmentation

2 Objectives

- To establish optimal chemical composition of nutrients and electron acceptors
- To identify dominant benzene-degrading consortium using molecular approaches

Soil Characteristics

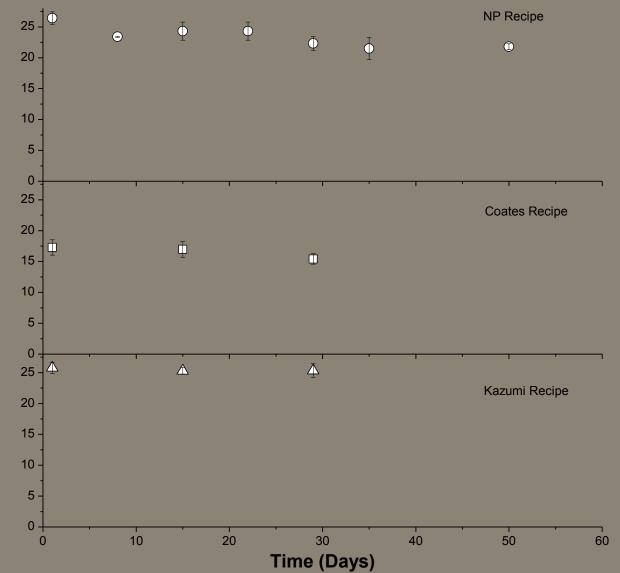
Parameters	Value
Benzene (mg/kg)	<u>50</u>
Toluene (mg/kg)	10.3
Ethylbenzene (mg/kg)	251
Xylenes (mg/kg)	1080
Petroleum Hydrocarbon F1 (mg/kg)	9680
Petroleum Hydrocarbon F2 (mg/kg)	2990
Petroleum Hydrocarbon F3 (mg/kg)	120

Groundwater Characteristics

Parameters	Value
Temperature (°C)	11.13
рН	6.59
Electrical Conductivity (µs/cm)	8.13
Oxidation Reduction Potential (mV)	- 40
Dissolved Oxygen (mg/L)	0.56
Nitrate (mg/L)	1.24
Phosphate (mg/L)	0.02
Sulphate (mg/L)	14.8
Benzene (mg/L)	<u>10.7</u>
Toluene (mg/L)	1.12
Ethylbenzene (mg/L)	3.18
Xylenes (mg/L)	3.1
Petroleum Hydrocarbon F1 (mg/L)	15
Petroleum Hydrocarbon F2 (mg/L)	4.72
Petroleum Hydrocarbon F3 (mg/L)	0.051

Amendment Recipes

Recipe	Media Composition (each litre)	Benzene Concentration (mg/L)
NP	3.5 g NaNO ₃ , 0.3 g K ₂ HPO ₄ , 1.49 mg FeCl ₂ ·4H ₂ O	<u>25</u>
Coates	4.0 g Na ₂ SO ₄ , 1.36 g <u>sodium acetate</u> , <u>20 g NaC</u> I, 0.5 g KCI, 0.2 g KH ₂ PO ₄ , 0.25 g NH ₄ CI, 0.15 g CaCl ₂ ·2H ₂ O, 3 g MgCl ₂ ·H ₂ O, 1.49 mg FeCl ₂ ·4H ₂ O	25
Kazumi	2.84 g Na ₂ SO ₄ , 1.3 g KCl, 0.2 g KH ₂ PO ₄ , 23 g NaCl, 0.5 g NH ₄ Cl, 0.1 g CaCl ₂ ·2H ₂ O, 1 g MgCl ₂ ·H ₂ O, 2.5 g NaHCO ₃ , 1.49 mg FeCl ₂ ·4H ₂ O	17
SA	2.7 g K ₂ SO ₄ , 0.5 g KNO ₃ , 1 g KH ₂ PO ₄ , 0.5 g NH ₄ Cl, 0.14 g CaCl ₂ .2H ₂ O, 1 g MgCl ₂ .6H ₂ O, 2.5 g NaHCO ₃ , 2 mg FeCl ₂ .4H ₂ O	17
SA+T	10 mg toluene 2.7 g K ₂ SO ₄ , 0.5 g KNO ₃ , 1 g KH ₂ PO ₄ , 0.5 g NH ₄ Cl, 0.14 g CaCl ₂ .2H ₂ O, 1 g MgCl ₂ .6H ₂ O, 2.5 g NaHCO ₃ , 2 mg FeCl ₂ .4H ₂ O	17
SA+BP	25 mg benzoate, 35 mg phenol 2.7 g K ₂ SO ₄ , 0.5 g KNO ₃ , 1 g KH ₂ PO ₄ , 0.5 g NH ₄ Cl, 0.14 g CaCl ₂ .2H ₂ O, 1 g MgCl ₂ .6H ₂ O, 2.5 g NaHCO ₃ , 2 mg FeCl ₂ .4H ₂ O	17

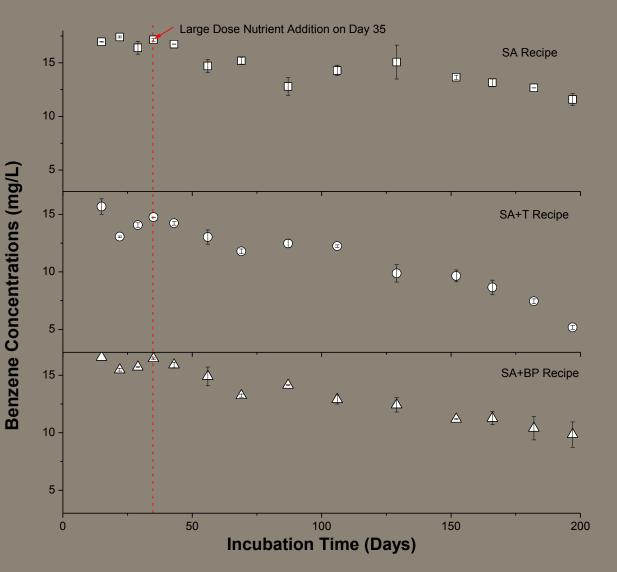

Microbial Analysis

- BioSep BioTrap pre-amended with [¹³C] benzene
- Soil, groundwater, BioSep BioTrap was incubated with recipe SA+T
- Analysis of [¹³C] of dissolved inorganic carbon
- Analysis of fatty acid methyl esters (FAMEs)
- Analysis of real-time quantitative polymer chain reaction (qPCR)
- Analyses of denaturing gradient gel electrophoresis (DGGE) and 16S rRNA

4 **Results and Discussion**

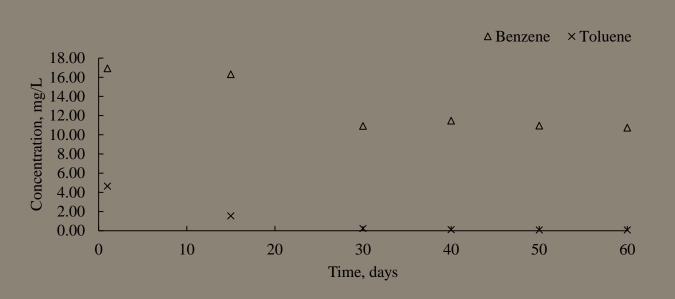
Recipes NP, Coates, and Kazumi

3enzene Concentrations (mg/L)

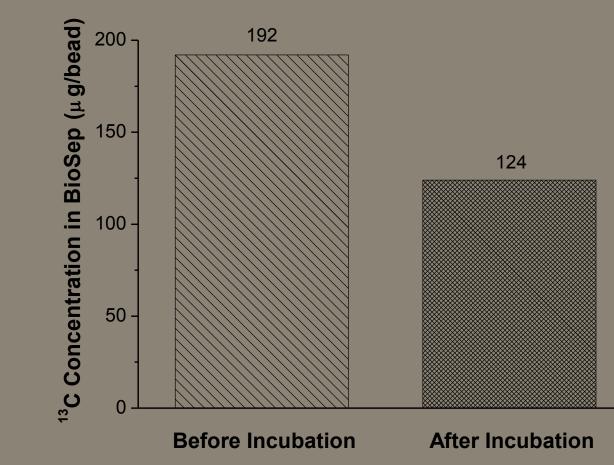

Benzene was degraded only slightly in microcosms incubated with Recipe NP, Coates, and Kazumi.

 \bullet

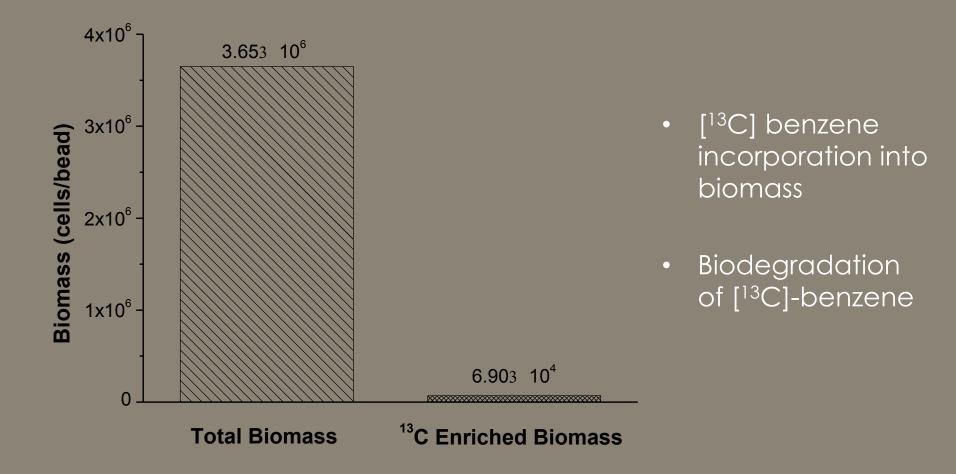
Salinity, high initial benzene concentration, <u>alternative carbon</u> source, and an extended lag time may result in the low benzene degradation rate.


4 Results and Discussion Recipes SA, SA+T, SA+BP

- The lag time was overcome by the large-dose addition of the amendments.
 - Recipe SA+T with toluene amendment achieved the highest benzene degradation rate.


4 Results and Discussion Toluene's Role on Benzene Biodegradation

- Both toluene and benzene were degraded effectively in a rapid manner during the first 30 days.
- After 30 days, benzene degradation stopped with the toluene depletion.

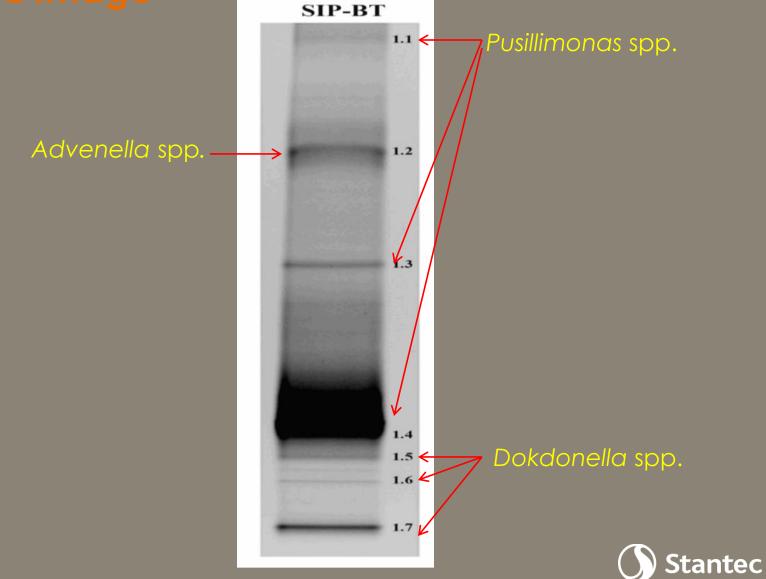

4 Results and Discussion [¹³C] Concentrations on BioSep Beads

- Degradation rate of [¹³C] benzene was calculated to be 35.42%.
- BioSep beads could
 support microorganism
 growth.

4 Results and Discussion Total and [¹³C]-enriched biomass

4 Results and Discussion

Community Structure	% of Total PLFA
Proteobacteria (Monos)	63.1
General (Nsats)	32.9
Firmucutes (TerBrSats)	2.8
Anaerobic metal reducers (BrMonos)	1.1
Actinomycetes (MidBrSats)	0.2
Eukaryotes (Polyenoics)	0.0


4 Results and Discussion qPCR Analysis

Functional Genes	Gene Copy Numbers	
Benzene carboxylase (abcA)	<50	
Benzylsuccinate synthase (bssA)	<50	
nirS	2.01×10 ⁶	
nirK	3.05×10 ⁷	
Phylogenetic Group		
APS	5.13×10 ²	

4 **Results and Discussion**

DGGE Image

4 **Results and Discussion**

16S rRNA Analysis

Band	Similar Genus	Similarity Index	Affiliation	GenBank Accession Number
1.1	Pusillimonas spp.	0.926	Betaproteobacteria; Alcaligenaceae	FN667020.1
1.2	Advenella spp.	0.880	Betaproteobacteria; Alcaligenaceae	KC464861.1; KC207092.1; JQ799008.1
1.3	Pusillimonas spp.	0.990	Betaproteobacteria; Alcaligenaceae	KC464818.1; HQ326782.1; FN667020.1
1.4	Pusillimonas spp.	0.923	Betaproteobacteria; Alcaligenaceae	FM956659; FJ791048; GQ246953
1.5	Dokdonella spp.	0.980	Gammaproteobacteria; Xanthomonadaceae	JQ726695.1; JQ726692.1; JQ726691.1
1.6	Dokdonella spp.	0.970	Gammaproteobacteria; Xanthomonadaceae	JQ726695.1; JQ726692.1; JQ726691.1
1.7	Dokdonella spp.	0.876	Gammaproteobacteria; Xanthomonadaceae	AY921834.1

5 Lessons Leaned / Conclusions

- Salinity and a high initial concentration of benzene were detrimental for benzene biodegradation.
- A large dose of amendment can shorten the lag time for benzene biodegradation.
- Toluene was an essential co-substance for promoting benzene biodegradation.
- Incorporation of ¹³C-benzene into microbes provided direct evidence for benzene biodegradation.
- Dominant mechanism for benzene biodegradation was nitrate reduction in this study.
- Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant in the microbial community and involved in anaerobic benzene bioremediation.

Acknowledgments

Key Financial Support

- Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant
- Stantec Consulting Ltd. Research & Development Fund
- Mitacs-Accelerate Graduate Research Internship Program

Thank you

