

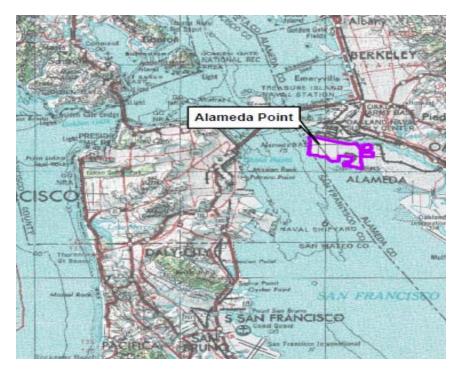
Combining ISCO and ISB Under a Performance-Based Project Delivery

Former Alameda Point NAS - Alameda, CA

Presented by Mark O'Neill and Bruce K. Marvin, P.E.

Former Naval Air Station Alameda

- Former oil refinery 1890-1920
 - Tarry Refinery Waste (TRW)
- Wetlands filled 1927
 - Alameda Airport
- Naval Air Station 1936-1997


Three Sites Remedial Design thru Long-term Monitoring

- Sites 9 & 19 MNA - NFRA

IR Site 13

- Fuel Release(s) Benzene and Ethyl Benzene
- Vapor intrusion exposure pathway
- Groundwater use prohibited

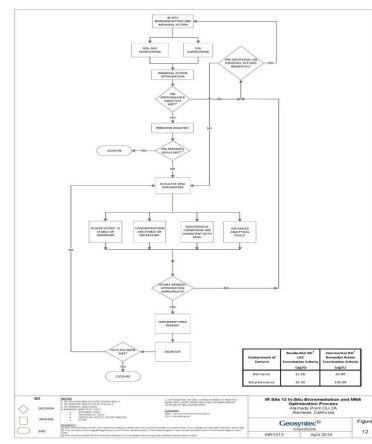
Site Background

Alameda Point Project Attributes

Performance-based Fixed Fee Contracting and Project Delivery

- 10% Retention of Construction Costs until Commercial Remedial Goals
- Turnkey Eight Project Documents (RD, RAWP, SAP, LUC-RD, WMP, etc.)

Combination of Remedial Technologies


- Navy Specified In-situ Bioremediation (ISB)
- TRW made ISB-only not viable
- Geosyntec Offered In-situ Chemical Oxidation Enhanced ISB

Combination of Delivery Methods

- Passive (Direct Emplacement) and Active Delivery (DPT)
- Auger Borings
- Biovent Wells
- Three Phases Direct Push Injections

Performance-based Project Delivery

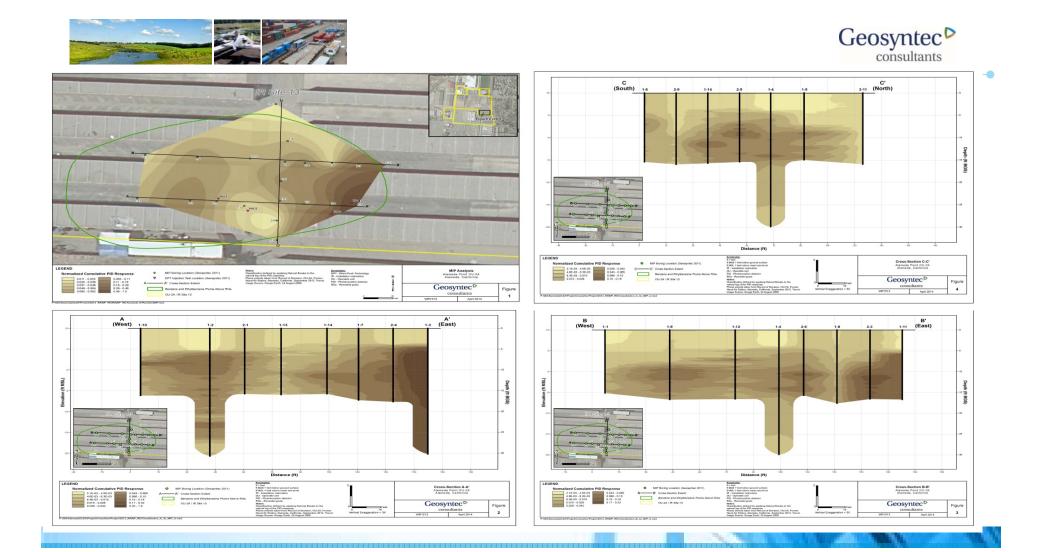
Performance Objectives

- Reduce Concentration 90%
- Dissolved Oxygen Greater than 4 mg/L
- **Decisions and Decision Criteria**
 - Biovent Operational Mode
 - Continued ISB Evaluation Criteria
 - MNA Transition
 - Remedy Optimization Criteria

Land Use Controls - Remedial Design

Contaminant of Concern	Residential RG LUC Termination Criteria (µg/L)	Commercial RG Remedial Action Termination Criteria (µg/L)
Benzene	11.26	37.84
Ethyl benzene	31.46	105.69

- The remedial goals (RGs) are the basis for measuring the success of remedial activities.
- Commercial vapor intrusion criteria are remedial action RGs
- Residential vapor intrusion criteria is the institutional controls termination criteria for residential reuse restrictions


Pre-Remediation Activities

Map the geology and extent of benzene within the target remediation zone.

Activities included:

- Membrane Interface Probe (MIP) Investigation
 - Ratio of Photo-ionizing Detector to Flame-ionizing Detector response
- Injection Testing
 - Establish pressures and flow-rates for DPT Injections
- Biodegradation study
 - Evaluate limitations on aerobic biological degradation of benzene and ethylbenzne
 - Results indicated that O2 is the rate limiting factor

Remedial design focused on increasing and maintaining oxygen concentrations using multiple delivery methodologies

Combining ISB and ISCO

Partial oxidation of complex wastes improves bioavailability

Challenges include:

- Selecting the dosage of chemical and biological amendments
- Determining the temporal separation of amendments
- Determining performance monitoring metrics to guide effective technical decision making

When properly implemented, can effectively minimize the overall remediation program costs and time

ISCO DOES NOT STERILIZE SOIL

Journal of Ozone Science and Engineering (1965 forward)

Marvin et al (1998)

 Continuous ozone – decreased population density and stressed community Klens et al (2001)

Populations decreased, released DOC stimulated aerobic activity
Droste et al (2003)

Persulfate/permanganate stimulated reductive dechlorination

- Fernandez et al (2004)
 - NaMnO₄ IRM stimulated reductive biological activity
 - Case Example #2
- Azadpour-Keeley et al (2004)

No change in community structure - stimulated activity briefly
Sahl and Munakata-Marr (2006)

- The Effects of In Situ Chemical Oxidation on Microbiological Processes: A Review

Amendment Selection

Klozur® CR - 50:50 of sodium persulfate and calcium peroxide

- Provides short-term ISCO to partially oxidize non-target long-chain hydrocarbons
- Provides long-term source of oxygen and base to maintain neutral pH

PermeOx® Plus - calcium peroxide

- Hydrolysis of calcium peroxide induces the alkaline activation method
- Increase calcium hydroxide concentrations to propagate radical oxidative reactions

Limestone gravel

- Buffer pH to offset acidity from oxidation of hydrocarbon and iron

Atmospheric Oxygen

- Bioventing blowers injected over 100 liters/minute per well
- Passive turbines produced

Passive

- 69 12" auger borings to 15 ft bgs

- Klozur® CR in backfill
- Limestone gravel (buffer pH)
- Surface seal
- Provide primary porosity to enhance delivery and distribution

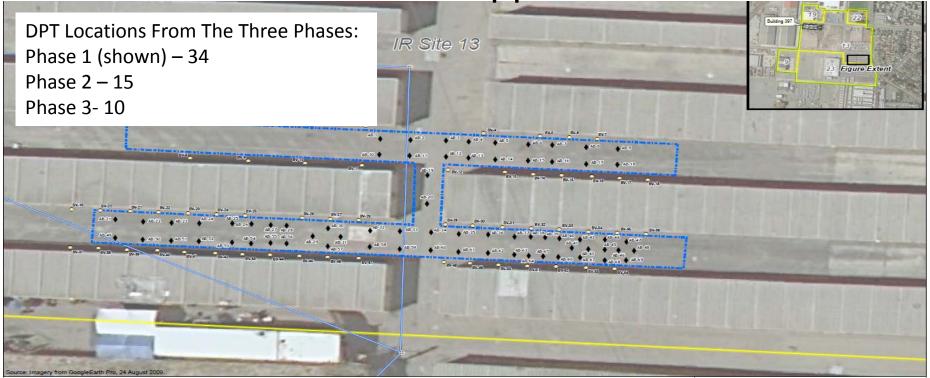
Active

- Replenish oxidant and oxygen
- Biovent wells in blowing (fan) and suction (wind-driven)
- DPT Locations adjusted to O&M data

Delivery Methods

Biovent Treatment

System Layout



Direct Push Injection

Approach

Direct Push Injections

Geosyntec^D

Three phases of DPT Injections

- First (August 2014) Klozur® CR
- Second (December 2014) Calcium Peroxide
- Third (March 2015) Klozur® CR
- First phase uniform distribution throughout the remedial area
- Second and third events
 - 15 Locations based on benzene, ethylbenzene in groundwater
 - 10 Locations selected based on DO values

Bioventing System

Oxygen delivery to vadose zone, capillary fringe and groundwater

54 46-cm auger borings to 3-m depth

- Klozur® CR in backfill
- Limestone gravel (buffer pH)
- Low Pressure Blowers

- Introduce air to stimulate microbial activity

- Wind-turbines in suction mode
 - Induce pressure gradients to enhance air distribution

Screens set from 1.5 to 6 ft bgs

- Tidal influence limited air injection in winter

Results

Within 9 months benzene and ethyl benzene concentrations in groundwater reduced to below residential RGs or 90% from baseline

- All monitoring wells below residential RGs for ethyl benzene
- 3 of 4 monitoring wells below residential RGs for benzene
- MW-206 reduced from 865 ug/L to 62 ug/L for benzene still exceeds commercial level RGs

PID reading decreased 90% from baseline

Soil vapor oxygen greater than 20%

Lessons Learned

- Navy was less agile than expected delays are the norm
 - One Year O&M option to be exercised by 30 Sept
- Tidal influence limited winter bioventing operations
 - Biovent fans overheated and required replacement
- Persulfate-based ISCO can be coupled to Aerobic ISB
 ISCO does not sterilize soil
- Shortened remedial timeframe and lower project costs