CHEMOX®

Concepts of Chemical Oxidation vs. Chemical Oxygenation and Considerations for Engineered Remediation Design

REMTECH 2015

October 14, 2015
B.J. Min, M.Eng., P.Eng.
Jevins Waddell, P.Tech (Eng)

AGENDA

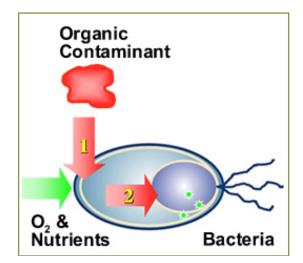
- Feasibility and Challenges of Engineered Bio & Chemical Remediation Applications
- Reaction Kinetics: Oxidation vs. Oxygenation
- Selection and Engineering Design Factors and Applications for Oxidation
- Health and Safety Considerations
- Case Studies Chemical Oxidation by Enhanced Hydrogen Peroxide at contaminated sites

Engineered Bio or Chemical Remediation

- Deep roots tracing to waste water / sewage treatment.
- Controlled vs. Natural Environment
- Technically feasible not financially viable in most cases.
- Perceptions vs. Reality
- Misunderstanding between Oxidation
 (Mineralization Chemical Remediation) and
 Oxygenation (Aeration Bioremediaton)

Chemicals for Oxidation vs. Oxygenation

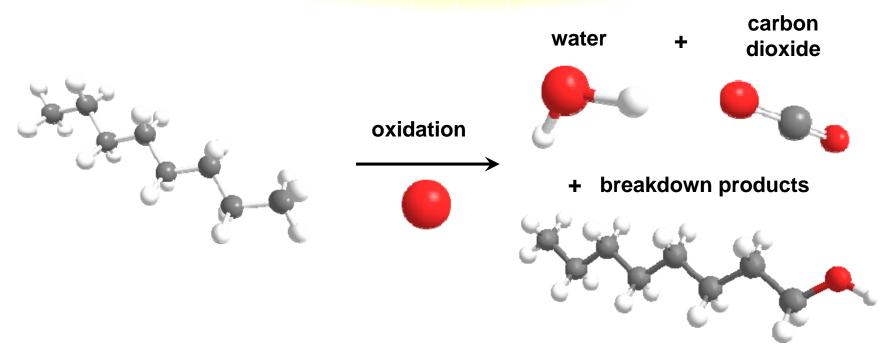
Chemical Oxidants	Oxygen Release Chemicals
Enhanced Hydrogen Peroxide (H ₂ O ₂)	Peroxide Compounds
Permanganate (MnO ₄ -)	e.g. Calcium Peroxide (CaO ₂)
Persulphate (S ₂ O ₈ ²⁻)	Commercially available ORC products
Ozone (O ₃)	Raw Hydrogen Peroxide
To generate Reactive Species	To provide Oxygen (aeration)


Only successful chelation and activation of chemical oxidants can generate effective reactive species in the field applications!

Reaction Kinetics - Oxygenation

- Part of stimulation of microbial activities in bioremediation.
- Process itself is not a contaminant mass removal process.
- A slow oxygen release compound is often misunderstood as a remediation agent.

Example - Oxygenation


- Calcium peroxide naturally decomposes very slowly to form calcium hydroxide and oxygen.
- Usage: Bioremediation and baking industry.

$$2CaO_2 + 2H_2O \rightarrow 2Ca(OH)_2 + O_2$$

or
 $CaO_2 + 2H_2O \rightarrow Ca(OH)_2 + H_2O_2$
 $2H_2O_2 \rightarrow 2H_2O + O_2$

Reaction Kinetics – Oxidation by Enhanced Hydrogen Peroxide

Oxidation - Decomposition of Organic Compounds

Reaction continues to reduce original contaminants and breakdown products as it continues.

Ex-situ Application- Oxidation by Enhanced Hydrogen Peroxide

- Unsaturated soils
- Shallow soils (<4 mbg)
- Typically fine grained
- Large volume treatment per day

- Remote or local access
- Rapid treatment (<3 days)
- Low input requirements
- Cost/Time/Safety/Sustainability

In-situ Application- Oxidation by Enhanced Hydrogen Peroxide

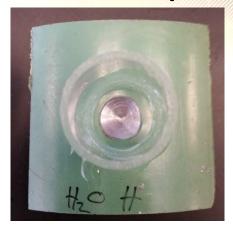
- Groundwater (Vadose Zone)
- Dissolved phase impacts
- Deeper units (>3 mbg)
- High conductivity/bedrock

- Remote or local access
- Year round
- Low input requirements
- Cost/Time/Safety/Sustainability

Design Basis and Parameters for Oxidation by Enhanced Hydrogen Peroxide

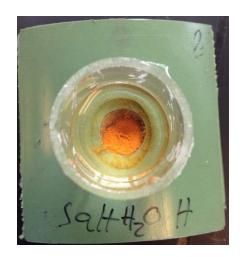
- Geological / hydrogeological characterization
- Background analytical parameters
- Partitioning in soil and groundwater
- Size of plume
- Oxidant demands SOD & NOD
- Selection of a suitable oxidant
- Chelation / activation strategies
- Target timeframe and end points
- and etc.

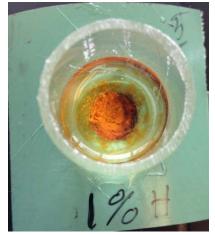
Heath & Safety Concerns


- Not a Routine Set-up
 - Regulation & supplier requirements
 - Client engagement & readiness (H&S, asset integrity, etc)
 - Project/stakeholder requirements
 - Controls –
 Administrative/Engineered/PPE/Competency

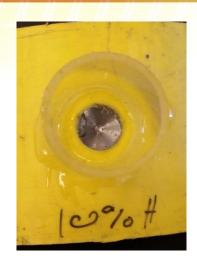
Corrosion Testing - Enhanced Hydrogen Peroxide Surface observation (FBE)

Before exposure





After 30 days


Corrosion Testing - Enhanced Hydrogen Peroxide Surface observation (YJ)

Before exposure



After 30 days

 $\mathsf{CHEMOX}^{\scriptscriptstyle{\circledR}}$

Case Study 1 Ex- situ Chemical Oxidation

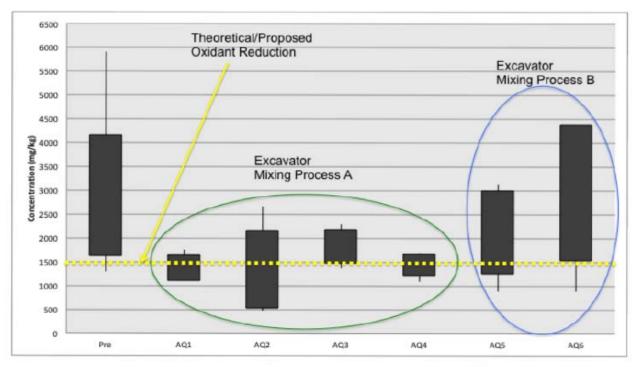
Optimized mixing for effective reactions

Generate aimed chemical oxidation reactions in fine grained soils

Details

- Abandoned Pipeline Alberta, Canada
- When: 2012 2013
- Contaminants of Concern: BTEX/F1-F4
- Impacted Media and Volume: >10,000 m³ of Fine Grained Soil
- Tasks: Ground Disturbance and Proximity Arrangement, Field Screening, Procurement, Blending, Field Applications, Sampling
- Project Value \$1,300,000
- Completion 100%

The Problem


- Contaminated soil discovered by landowner when drilling fence posts
- Sandy silt/clay soils
- Minimal site disturbance required
- External stakeholder sensitivities
- Contamination:
 - BTEX: up to 7 mg/kg
 - PHC F1: up to 700 mg/kg
 - PHC F2: up to 950 mg/kg
 - PHC F3: up to 1400 mg/kg

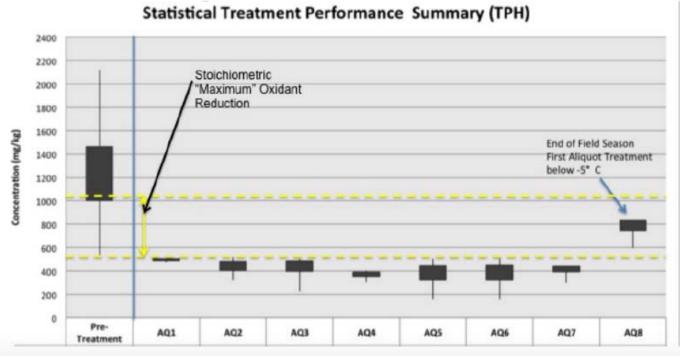
The Approach - ChemOx®

- Ex-Situ Chemical Oxidation Program (EXCO®)
 - Direct application of 250,000 L of TRIUM's ChemOx® enhanced hydrogen peroxide over period of 10 weeks
 - Remediation Train® approach to supplement EXCO® with landfill program of 3,500 m³ of highly impacted soils

The Results

- Samples collected within 24 hours of treatment completion satisfied de minimus remediation criteria (AENV Tier I, Agricultural Areas) or were below lab detection limits
- Cost savings versus complete landfill option
- Low footprint and program support by landowner
- Zero health and safety events

Excavator Process


- Increased variability
- Reduced reproducibility

Mulcher Process

 Reduced variability

ility

Increased reproducibility

Case Study 2 In-Situ Chemical Oxidation

Mass destruction to overcome residual impacts

Overcome rebounding and site closure within the target timeframe

CHEMOX®

Detalls

- Active Retail Gas Station Edson, Alberta
- When: 2013/2014
- Contaminants of Concern: BTEX
- Impacted Media and Volume: Groundwater, Discrete Point Source Treatment
- Tasks: Program Design, Injection Well Installation, Procurement, Blending, Field Applications, Sampling
- Project Value \$111,000
- Completion 100%

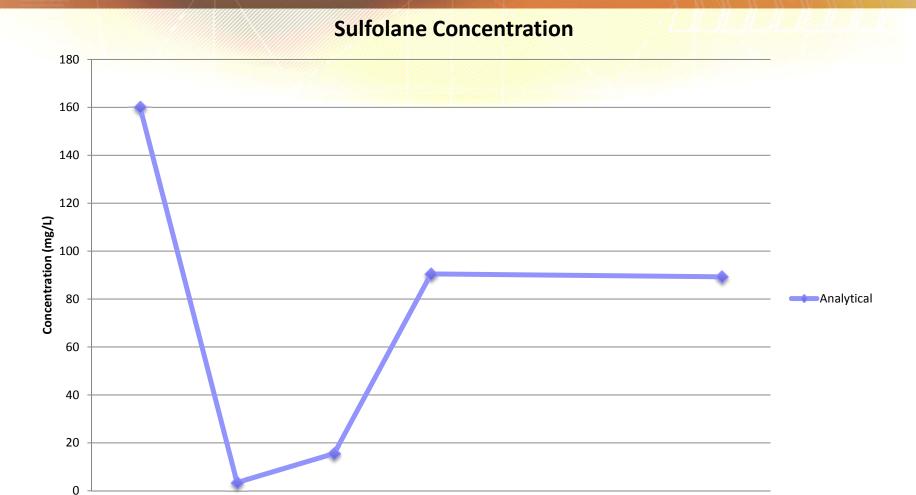
The Problem

- Property sale pending, expedited results required
- High vehicle/pedestrian traffic area
- Minimal site disturbance and small footprint required
- Winter season
- Contamination from UST area
- Sitly Clay soils, shallow groundwater table (< 3 mbg)
- Contamination:
 - Groundwater
 - Benzene, ethylbenzene: Marginally impacted, exceeding site criteria by less than <1 mg/L
 - Bezene criteria 0.005 mg/L
 - Ethylbenzene criteria 0.0024 mg/L

The Approach - ChemOx®

- Pre and post treatment verification sampling
- In-Situ Chemical Oxidation Program (ISOTEC®)
 - Install 6 injection wells discretely within contaminated interval
 - Secure site for oxidant storage and exposure control
 - Conduct injection activities over night to avoid conflict with gas station operations
 - Heated injection units allow winter execution
 - Inject 7,600 L of TRIUM's ChemOx® enhanced hydrogen peroxide over 3 programs of <5 days each

The Results


- Post treatment samples satisfied remediation target and allowed for approval of sale
- Real-time performance monitoring and reporting to client
- No on-site disturbance to site operations
- Zero lost time or first aid health and safety events

Case Study 3 – Sulfolane in GW

- Treatment at the most heavily impacted monitoring well location.
- Over 3 days of injections a total volume of 320L of 15% Enhanced Hydrogen Peroxide was administered.
- Four groundwater samples were taken 3, 10,
 24 and 52 days from the beginning of the pilot.

Analytical Results for Field Pilot

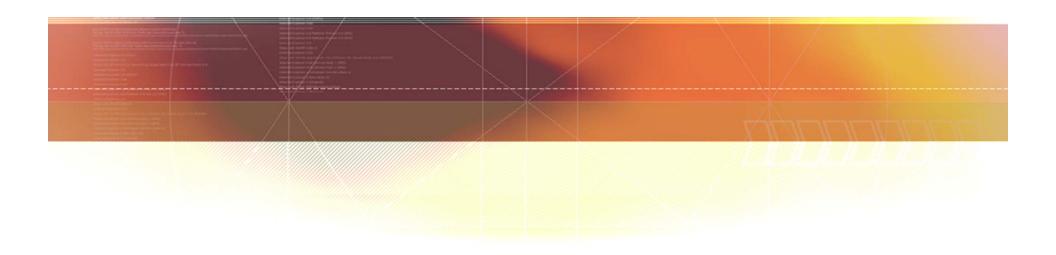
Time (days)

Proof of Concept

- Does not use dedicated monitoring wells as injection wells, as short term analytical results can be biased by various other injection related factors (i.e. dilution, dispersion, etc).
 - Closed system dilution
 - Closed system displacement
 - ✓ Groundwater flow/chemical diffusion
 - Open system diffusion
 - ✓ Open system hydraulic dispersion
 - Closed system mass destruction

Summary

- The groundwater flow and open system dispersion models provide good correlation and evidence of the effects of "dilution" to the system.
- This extends up to the "24/52" day sampling events, where the linear relationships of the models deviate.
- This deviation could be considered reflective of reductions due to oxidation, with a potential reaction efficiency of up to 80% being observed.
- The 100 day sampling event is planned for early October


www.chemox.org

Locations
Cochrane (HQ) / Edmonton / Drayton Valley

<u>International</u> USA / S. Korea / Middle East / China CHEMOX®

Thank you

Acknowledgment

