Re-Evaluating Remedial Objectives and the Conceptual Site Model at a Diesel Impacted Fractured Bedrock Aquifer in the Alberta Foothills

RemTech 2015

Brent Lennox, M.Sc., P.Geol. Waterline Resources Inc.

Timeline

- ~1998: Diesel impacts identified in a domestic use aquifer
- 19 years of groundwater monitoring
- > 50+ piezometers
- Remedial trials: MPE, SVE, pump and treat, nutrient amendment, etc.
- 2010 to Present: Pump and treat remediation system operation and refinement, source characterization

Site Setting

Potential Sources: Drilling Event

Orange: Heavily Contaminated (Anecdotal) (1982) Yellow: Lightly Contaminated (Anecdotal) (1982)

Blue: Trees Cleared (1985)

Potential Sources: Other

Estimated Hydrocarbon Volumes

Drilling Events

First Event: 157 m³

Second Event: 298 m³

Total: 455 m³

Sump:

Portion of Drilling Events

Former Flare Pit: Likely Low Volumes

USTs/ASTs: ????

Hydrocarbon Impact Extent in Groundwater

Orange: Heavily Contaminated (Anecdotal)

Yellow: Lightly Contaminated (Anecdotal)

Pink: Interpreted LNAPL Extent

Hydrocarbon Characterization

Generally
diesel
impacts
identified
(D), aside
from
ASTs/USTs
and
Separator

L: LNAPL, GW: Groundwater, S: Soil or rock

LID: Diesel type hydrocarbon

<or>
 In the second state of the second s

Salinity and Metal Source Indicators

- Phase I indicated that barium and salinity parameters would be of concern based on the drilling materials that were used
- Low chloride and barium concentrations in groundwater at the lease (good for the environment but not good for source characterization!)

Waterline Resources Inc.

Credit: AKS Geoscience

Sources: Summary

LNAPL plume

Limited
dissolved
hydrocarbon
impacts

Diesel

Orange: Heavily Contaminated (Anecdotal) Yellow: Lightly Contaminated (Anecdotal)

Pink: Interpreted LNAPL Extent

Pathway: Groundwater

- Figure 1.2. Generally NE flow direction, while LNAPL plume has a southeast orientation
- Fracture controlled flow?

Blue Arrows: Typical Groundwater Flow Direction

Pink: Interpreted LNAPL Extent

Pathway: Unsaturated Zone

Open Fracture Orientations- Test Cell

- Optical televiewer used to spatially map fracture orientations and apertures in the unsaturated zone
- On a local scale, the fracture orientations are complicated and difficult to interpret

Pathway: Unsaturated Zone

- Dip
 direction
 to SE
- Dipsgenerally<40°(bedding)

Blue Arrows: Typical Groundwater Flow Direction

Pink: Interpreted LNAPL Extent

Brown: Average Fracture Dip Direction

Pathway: Downhole Camera

- Jetting tool used to gently clean borehole walls
- Downhole camera with fisheye lens used at the lease
- Vertical fractures generally had greater fracture apertures than subhorizontal fractures
- UV attachment also used to observe potential fluorescence of hydrocarbons (but no hydrocarbons were observed in normal and UV light)
- Average open fracture aperture of 9 cm (optical televiewer)

Raw Footage of Downhole Camera https://youtu.be/QDqO 7i2Wa4

Pathway: Summary

Pathway: Groundwater, Overland or Air?

- Orientation of anecdotal information appears to fit best with available information
- Orientation of fractures also likely have an influence

Orange: Heavily Contaminated (Anecdotal) (1982) Yellow: Lightly Contaminated (Anecdotal) (1982) Blue: Trees Cleared (1985) Pink: Interpreted LNAPL

Brown: Average Fracture Dip Direction

Blue Arrows: Typical Groundwater Flow Direction

Remediation: Source Removal

- Estimated
 Hydrocarbon
 Remediation
 Volumes
- Sump
 Remedial
 Excavation:
 47 m³
- ➤ UST
 Removal:
- > 1985 Tree Clearing ????

Orange: Heavily Contaminated (Anecdotal) (1982) Yellow: Lightly Contaminated (Anecdotal) (1982)

Blue: Trees Cleared (1985)

Remediation: Pump and Treat

- System Optimization: Pumping tests, partial pumping well abandonment, used different well configurations
- ➤ ~0.1 m³ of hydrocarbon equivalent volume removed using pump and treat methods from 2010 to 2014
- No measurable change in water quality when system turned off
- Useful from containment and risk management perspectives and for oxygenating groundwater at injection galleries

Manual LNAPL Recovery

- Passive bailers, manual bailing, and sorbent socks used to recover LNAPL on an annual to quarterly basis
- 0.07 m³ hydrocarbon equivalent volume recovered during a similar time period to the pump and treat system
- LNAPL monitoring done opportunistically when on-site for other activities

Natural Attenuation

- Natural attenuation of hydrocarbons is occurring
- Steady state plume

Blue/Green: Elevated Manganese

Purple: Negative ORP

Brown:
Depleted
Nitrate&Nitrite

Natural Attenuation: Volume Estimate

- Assumed a natural attenuation front or "wall" on the downgradient portion of the plume keeps the hydrocarbon plume at steady state (i.e., not growing)
- Using conservative parameters for calculating the advective flux (i.e., Darcy flux*concentration)

Estimated removal of 53 m³ hydrocarbon equivalents/year,

530 m³/10 years

Uncertainty regarding length of "wall" and time

Ballpark estimate, lots of variables with uncertainty

Natural Attenuation: Volume Estimate

Used stoichiometry to very roughly estimate natural attenuation via the primary biodegradation mechanisms at the site (nitrate and manganese reduction)

Mechanism		Estimated Hydrocarbon Equivalents (Toluene) (m³)
Nitrate Reduction		205
Manganese Reduction		265
	Total	470

Estimated Source and Remediation Volumes

Source	Estimated Hydrocarbon Volume (m³)
First Drilling Event	157
Second Drilling Event	298
ASTs/USTs	????
Total	455 to ????

Impacts not remediated to date, discrepancy likely related to uncertainty regarding natural attenuation estimate

Remedial Activities	Estimated Hydrocarbon Volume Remediated (m³)
Remedial Activities in 1980s Related to the Drilling Events	????
UST Remedial Excavation	????
Sump Remedial Excavation	47
Pump and Treat Remediation	0.1
Manual LNAPL Recovery	0.07
Natural Attenuation	470 to 530
Total	517 to 577

Remediation: Summary

Based on the steady state plume and long-term groundwater monitoring, natural attenuation and manual LNAPL recovery appears to be the most effective long-term remedial approach for this site

Questions?

Thank You

Brent Lennox
Waterline Resources Inc.

blennox@waterlineresources.com

http://www.waterlineresources.com

