Lessons Learned in the Remediation of Herbicides Contaminated Groundwater Using Engineered_PhytoremediationSM

William Campbell PE TEA, Inc. Baton Rouge, LA, USA

Types of Phytoremediation

Traditional phytoremediation

- Engineered_PhytoremediationSM
 - Utilizes patented technology
 - Promotes vertical root growth
 - Focuses the hydraulic influence of trees on targeted groundwater zones
 - Enhances tree viability in phytotoxic environments

Site Background

- Herbicide production facility from 1961-1980
- Asphalt cap installed in 1988 over the former manufacturing area
- 2,4-Dichlorophenoxyacetic acid (2,4-D).2001 Max Conc. = 3,800 ppm
- 0.3m-2m fill and surficial sand overlying
 10m thick lacustrine, 20m thick clay till,
 5m thick empress formation, and
 bedrock

Site Phytoremediation Concept

- Target shallow lacustrine groundwater using *TreeWell®* units
- Groundwater flows upward through media within *TreeWell®* Root_SleeveTM
- Biodegradation prior to groundwater uptake
- Aeration tubing enhances dissolved oxygen levels

Pilot Study Objectives

- Determine viability as a long-term remedial strategy
- Reduce 2,4-D concentrations
- Obtain hydraulic control of groundwater

Challenges for Phytoremediation

- Presence of residual material
- Fluctuating groundwater levels resulting in temporary concentration increases
- Short growing seasons resulting in limited biodegradation
- Shallow water-table depth
- Nutrient deficient soils
- Unknown mortality rates during the early stages of the phytoremediation system

Engineered_PhytoremediationSM Implementation Timeline

- Focused pilot study (2002)
 - 6 species, 20 locations with 16 trees and 4 grasses
- Large scale pilot study (2005)
 - 6 species, 400 locations with trees 458 trees
 - Monitoring program (tree health and measurements, groundwater elevation, chemical analysis)
- Tree replanting (2007 and 2011)

Engineered_PhytoremediationSM Planting Locations

2005 Implementation

- Birch
- Green Ash
- Hackberry
- Laurel Leaf Willow
- Poplar
- Quaking Aspen

Replanting

- Green Ash
- Russian Olive
- Sea Buckthorn
- Tamarack

Engineered_Phytoremediation Installation June 2005

Phytoplantation Over Time

Trees can do more than just survive in the presence of 2,4-D

June 2007

Phytoplantation Over Time

Trees can do more than just survive in the presence of 2,4-D

June 2011

 \bigcirc = Concentration is non-detect for sampling event, graphed as 1/2 detection limit.

○ = Concentration is non-detect for sampling event, graphed as 1/2 detection limit.

Effects of Residual Material

Residual material can cause significant fluctuations in groundwater concentrations

Effects of Dissolved Oxygen

2,4-D Remediation affected when DO levels drop near to or below 1 mg/L

○ - Concentration is non-detect for sampling event, graphed as 1/2 detection limit.

Effects of Dissolved Oxygen

2,4-D Remediation affected when DO levels drop near to or below 1 mg/L

Changes in Dissolved Oxygen with Time

Aerobic Conditions	Baseline Groundwater Monitoring Event (Fall 2005)	Most Recent Groundwater Monitoring Event (Fall 2014)
Aerobic Conditions (DO ≥1 mg/L)	85% of Wells	47% of Wells
Limited Aerobic Conditions (DO ≥0.5 mg/L but < 1 mg/L)	10% of Wells	6% of Wells
Anaerobic Conditions (DO <0.5 mg/L)	5% of Well	47% of Wells

Growing Season Observations

Increased signs of stress during growing seasons

- Change in leaf color
- Droopy, curled, or cupped leaves
- Burnt leaf tips
- Early leaf drop

Tree Viability by Species

Tree Specie (Common Name)	Year Planted	Trees Remaining	% Remaining	
Green Ash	2005	35 of 40	88%	
Russian Olive	2011	113 of 140	81%	
Russian Olive	2007	73 of 95	77%	
Sea Buckthorn	2007	3 of 4	75%	
Green Ash	2007	57 of 85	67%	
Tamarack	2007	2 of 4	50%	
Hackberry	2005	15 of 40	38%	
Laurel Leaf Willow	2005	60 of 188	32%	
Quaking Aspen	2005	13 of 84	15%	
Paper Birch	2005	2 of 20	10%	
Theves Poplar	2005	0 of 82	0%	

Tree Vigor Ratings

Tree Specie	Year Planted	Jun-06	Aug-06	Jun-07	Sep-07	Jun-08	Sep-08	Sep-10	Sep-11	Sep-12	Aug-14
Green Ash	2005	2.9	3.1	3.3	3.1	3.3	3.5	3.8	3.5	4.0	3.9
Russian Olive	2011	NP	2.9	4.0	3.6						
Russian Olive	2007	NP	NP	NP	2.8	3.1	3.7	4.3	3.7	4.3	2.3
Buckthorn	2007	NP	NP	NP	2.9	3.8	4.0	4.2	4.5	4.7	3.8
Green Ash	2007	NP	NP	NP	1.8	2.5	1.8	2.3	3.5	2.6	3.7
Tamarack	2007	NP	NP	NP	2.1	3.3	2.8	4.0	4.0	4.0	2.9
Hackberry	2005	1.8	2.3	2.4	2.5	2.8	2.6	2.3	2.5	1.9	3.2
Willow	2005	2.5	3.3	2.8	2.8	3.1	3.2	3.3	3.3	3.3	3.4
Quaking Aspen	2005	2.3	3.0	2.7	2.5	2.8	2.8	3.8	3.4	3.8	3.8
Paper Birch	2005	1.8	2.9	3.3	2.9	3.6	4.0	3.7	3.2	3.8	4.0
Theves Poplar	2005	2.6	3.5	2.2	2.7	2.3	3.3	1.5	N/A	N/A	N/A

Complicated Growth Monitoring

- Tree Heights (40% of monitored trees affected by pruned tree tops)
- Canopy Development

Exposure Effects

- Exposure to 2,4-D expressed through leaf or canopy appearance
- Exposure to chlorides expressed through leafs (e.g., burnt leaf tips)

Tree Replanting

- Root Placement within TreeWell® unit
- Species Selection

Water Level Observations

Average Early and Late Growing Season Groundwater Elevations

Lessons Learned at this Site

- Engineered_PhytoremediationSM has increased tree viability and established positive 2,4-D remediation results
- Diverse and carefully considered tree selection will increase system performance in the presence of numerous challenges
- Dissolved oxygen levels and residual materials significantly impact remediation
- Be flexible with conventional monitoring metrics
- Occasional replanting will be necessary

Contributors to the Project

TEA, Inc.

Christopher Akudo, PhD

(Baton Rouge, Louisiana)

William Campbell, PE

(Baton Rouge, Louisiana)

Russ Copeland, PE

(Baton Rouge, Louisiana)

Scott Courtright, Consulting Arborist

(Baton Rouge, Louisiana)

Dave Wandor

(Midland, MI)

Partners

Edward Gatliff, PhD

(Applied Natural Sciences, Inc., Hamilton, Ohio)

Audrey Sidebottom

(Dow Chemical Canada ULC, Fort Saskatchewan, Alberta)

Joanne West, PEng

(Dow Chemical Canada ULC, Nanaimo, British Columbia)

Thank You! Questions?

