Laboratory Treatability Study on an Innovative Approach to Remediation of Groundwater Impacted with DNAPL Using Stabilized ClO2/UV Radiation

by

Dr. Roger Saint-Fort, P.Ag. Environmental Chemist Mount Royal University Dept. of Environmental Science

&

Darcy Bye, P.Ag. Transcanada Corporation

Presentation Overview

- Problem Statement / Opportunity
- Beiseker Compressor Station Soaking Pit
- Understanding DNAPL?
- Behavior of DNAPL in the Subsurface
- Objectives
- Treatability Lab Work Program
 - Physical Models....
- What is Next?
 - * Field Pilot Remedial Design
- Questions?

Problem Statement/Opportunity

Remediation of groundwater impacted by DNAPL is a significant challenge facing TransCanada and many industrial sectors in Alberta.

Why?

- * Expensive
- * Intrinsically Toxic
- * Mutagenic / Carcinogenic
- ***** Toxic Metabolites Formation
- * Public / Regulatory Pressure
- * Environmental / Financial Liabilities

Beiseker Compressor Station – Former Soaking Pit

- On-stream Date: 1970-10-26
- Two compressor buildings, a control building and a storage building.
- Original design had subsurface and building floor drains move fluids to a sump.
- These liquids were then pumped to a subsurface absorption pit or soaking pit.
- The former soaking pit measured approximately 21.0 m by 1.0 m, and consisted of a perforated pipe at a depth of 3.7 m to 4.3 m below grade, lined with crushed rock and covered with fill.

Beiseker Compressor Station – Former Soaking Pit

- Former Soaking Pit was removed in 1996.
- Soil and groundwater investigations have been ongoing since 2000.
- Analytical results from the collected DNAPL:
 - BTEX and PHC F1to F4 concentrations are significant with a PHC F3 890,000 mg/l
 - PAHs, PCBs and Phenols are present at significant concentrations
 - The density analyses indicate that the product is about 15% denser than water and it has a kinematic viscosity of 69.57 cSt, which is greater than most lubricating oils
 - DNAPL is comprised of mainly phosphorus and sulphur, these results indicate the product is potentially a triaryl phosphate (TAP), Fyrquel fluid

Phase II Investigation

Conceptual Model of DNAPL Pools

- DNAPLs are denser than water allows them to migrate to substantial depths below the water table in both unconsolidated deposits and fractured bedrock.
- The subsurface region containing residual and pooled DNAPL is referred to as the source zone.
- As DNAPLs are only slightly soluble in water, DNAPL source zones can persist for many decades and, in some cases, even hundreds of years.

DNAPL pool in fractures

DNAPL residuals in fractures

DNAPL in the Subsurface: Residual

- Residual DNAPL formation Saturated : Unsaturated media
- Held in place by capillary and hydrophobic forces
- > Adopt the shape of the aquitard
- Residual DNAPL retained is site-specific a typical porous medium such as silt, sand and gravel is typically between 5 and 20 per cent of the pore space in the particular lenses and laminations invaded by the DNAPL.

The Opportunity -----

To develop innovative and cost-effective approach to risk manage groundwater contaminated with DNAPL

Components

PRIMARY OBJECTIVES

To ascertain:

- * DNAPL constituents chemical degradation
- *Dioxins and Furans formation
- * DNAPL sorption / travel time....off site
- * Physical model for more insights on tracer in the remediation design
- * Reactions of fluorescein with ClO2 at Room/GrH2O temp, respectively
- * Lab simulation for an infiltration gallery design

The above will inform the field pilot implementation!

* Ultimately, a field pilot!

CHEMICAL DEGRADATION Ma. & Me.

Stock Concentrations:

Phenol 20 µg/L; PCB 10 µg/L; PAH 20 µg/L; Gasoline 500 mg/L

		Chemica			1		
Treatment #	Phenol Addition (μL)	PCB Addition (μL)	PAH Addition (mL)	Gasoline Addition (µL)	UV Exposure	ClO₂ Addition	H₂SO₄ Addition*
1	90	24	1.2	48	No	No	No
2	90	24	1.2	48	Yes	No	No
3	90	24	1.2	48	Yes	Yes	No
4	90	24	1.2	48	Yes	Yes	Yes
Blank	0	0	0	0	No	No	No

* 0.01 mL of 6M H₂SO₄ was added to treatment 4 in order to reduce the pH to 3.5

- Used clean groundwater from the site

- Initial Standard Analytes Concentration in the treatments:

Phenol20 μg/LPAH20 μg/mLGasoline500 mg/mLPCB20 μg/mL

- Blank, Control, Trts with or without ClO₂ and UV combination

All chemical analyses performed by Maxxam Analytics.

CHEMICAL/PHOTOLYSIS DEGRADATION

Batch Degradation Systems

ClO₂/UV

<u>UV Lamp :</u> 254 nm 0.4 mW cm-2 6 W / 100 V 11 inch

8 min Rxt time.

Stabilized ClO_2 Chemical? * Strong Oxidant * Water Soluble * Oxidize over broad pH range * Does not hydrolyze in H₂O * No potential for toxic byproducts formation $\{2 ClO_2 (solid) + H_2O \leftrightarrow H_2O + ClO_3^- + ClO_2^-\} + UV$

Chlorate

Chlorite

Free radicals solution! A very high oxidation capacity!

UV enhances quantum vibration in molecules & degradation by ClO2!

Degradation Results

 TRT 1:
 No degradation

 TRT 2:
 ₅0-75 % PCBs;60-75% PAH;BETEX ₅0-80%; Phenol 74%

 TRT 3:
 97-100 % PCBs;76-93% PAH;BETEX 82-86%; Phenol 98%

 TRT 4:
 97-100 % PCBs;76-93% PAH;BETEX 82-86%; Phenol 98%

{ClO₂ /UV + Soluble-DNAPL -----> Simple-non toxic by-products + CO₂ + R-OH + Salts

No formation of dioxins or furans as by-products was detected!

BATCH ISOTHERMS @ 6 °C

Contaminants Sorption

Used clean subsoil substrate from the site 4.5-5 m
 Subsoil characterized for physical / chemical properties
 Spiked substrate with chemical standards / Equilibrated overnight
 Supernatant removed with glass syringe → Vial → Refrigerated

Textural Class = Clay Sand =34%; Silt = 22%; Clay = 44%; pH = 8.1; CEC = 19 cmole/kg; Ø = 60% ; SAR = 0.66 BD= 1.23 gmL⁻; D₁₀ = 0.058; Cμ = 1.47; CG = 0.0058

* Relative mobility / bioavailability / sorbing capacity evaluation

* Can model transport.....

ISOTHERM EXPERIMENTAL DESIGN @ 6 °C

	Concentration of spiking					
	solution		Treatment	Treatment	Treatment	Treatment
	(µg/mL)	Blank	1	2	3	4
Jar Weight (g)		183.3	181.13	185.19	185.19	188.25
Sample weight (g)		79.92	79.65	80.15	80.09	79.95
Water Added (mL)		30	30	30	30	30
PAH (µL)	20	0	250	500	1000	2000
PCB-S (µL)	10	0	50	100	200	400
SVPHEN-S (µL)	20	0	100	200	400	800
F24FIDE-S (µL)	70000	0	500	1000	2000	4000
BTEXHSAB-S (µL)	500000	0	10	20	40	80
Total Volume Spiked						
(mL)			910	1820	3640	7280
Total volume added to						
soil samples and total						
volume of water						
reference samples (mL)			30.91	31.82	33.64	37.28

ISOTHERM MODELS

Freundlich: $X/M = K Ceq^{1/n}$

Langmuir: X/M = (ab)(Ceq) / (1 + bCeq)

 $=> [Ceq] / [X/M] = {1 / [ab]} + {[Ceq] / [a]}$

Equation

$$V = \frac{K (dh/dl)}{(7.48 \, \emptyset) \, Rf}$$
Freundlich $\rightarrow Rf = 1 + \{ [Pb/\Phi] \, Kd \}$
Langmuir $\rightarrow Rf = 1 + [Pb/\Phi] \, \{a \, b / (1 + a \, C_{eq})^2 \}$

Freundlich & Langmuir Linear Regression Model Coefficients

	Freundlich	Freundlich			Langmuir			
	Linear Regression	KD	R2	Linear Regression	R2	a (mg/Kg)	b (mL/g)	
Analytes	an or when a brack pair	distant in	Proceeding.	eichteith Bulistian	Maria In	East contracts		
BENZENE	y = 38.969x + 9.8344	2.0759	0.9688	y = -0.0057x + 49.433	0.003	-175.4385965	-0.00012	
TOLUENE	y = 113.47x - 13.293	2.2267	0.9736	y = -0.005x + 50.378	0.003	-200	-0.00010	
THYLBENZENE	y = 473.54x - 46.407	2.6529	0.9786	y = -0.0048x + 51	0.002	-208.3333333	-0.00009	
n & p- XYLENE	y = 115.86x - 40.364	2.0786	0.9729	γ = -0.0047x + 50.095	0.002	-212.7659574	-0.00009	
D-XYLENE	y = 312.89x - 34.513	2.471	0.9775	y = -0.0048x + 50.824	0.002	-208.3333333	-0.00009	
=1 (C6-C10)	y = 3.2528x + 90.15	2.0252	0.8325	y = -0.0087x + 184.19	0.003	-114.9425287	-0.00005	
PAH-ACENAPHTENE	y = 4.3599x - 0.1101	0.892	0.8784	y = 0.0113x + 0.0184	0.043	88.49557522	0.61413	
AH-ACENAPHTYLENE	y = 4.8059x - 0.1076	1.0766	0.8983	y = 0.0098x + 0.0202	0.029	102.0408163	0.48515	
PAH-ACRIDINE	y = 4.6739x - 0.104	1.037	0.8949	y = 0.0092x + 0.0204	0.026	108.6956522	0.45980	
PAH-ANTHRACENE	γ = 4.7797x - 0.1056	1.0172	0.8929	y = 0.0092x + 0.0207	0.024	108.6956522	0.44444	
PAH-BENZO(a)ANTHRACENE	γ = 4.6154x - 0.1021	0.9978	0.8913	y = 0.0085x + 0.0206	0.019	117.6470588	0.4126	
PAH-BENZO(k)FLUORANTHRACENE	y = 4.904x - 0.1025	1.0114	0.9072	y = 0.007x + 0.023	0.013	142.8571429	0.3043	
PAH-BENZO(C)PHENANTHRENE	y = 4.6398x - 0.097	0.9588	0.8999	y = 0.0068x + 0.0222	0.010	147.0588235	0.3063	
PAH-BENZO(e)PYRENE	y = 4.9427x - 0.1035	1.0245	0.9045	y = 0.0077x + 0.0227	0.016	129.8701299	0.3392	
PAH-BENZO(a)PYRENE	y = 5.0572x - 0.1039	0.9917	0.9053	y = 0.006x + 0.0248	0.008	166.6666667	0.2419	
PAH-CHRYSENE	y = 4.5006x - 0.1054	1.0607	0.8843	y = 0.0125x + 0.017	0.058	80	0.7352	
PAH-FLUORANTHENE	y = 4.6268x - 0.1063	1.0163	0.8853	$y = 0.0105 \times + 0.019$	0.034	95.23809524	0.5526	
PAH-FLUORENE	y = 4.3412x - 0.1055	1.0659	0.8775	y = 0.0137x + 0.0154	0.078	72.99270073	0.8896	
PAH-2-METHYLNAPHTALENE	y = 5.8116x - 0.1004	0.9971	0.9311	y = 0.0006x + 0.0342	7E-05	1666.666667	0.0174	
PAH-NAPHTALENE	y = 6.0662x - 0.0985	0.9852	0.9372	y = -0.0015x + 0.0382	0.003	-666.6666667	-0.0392	
PAH-PHENANTHRENE	y = 4.2044x - 0.1118	1.2091	0.8633	y = 0.0189x + 0.0111	0.242	52.91005291	1.7027	
PAH-PERYLENE	v = 4.482x - 0.1133	1.1139	0.8694	y = 0.0153x + 0.0146	0.112	65.35947712	1.0479	
PAH-PYRENE	v = 4.3472x - 0.1091	1.0857	0.8685	y = 0.0152x + 0.0144	0.103	65.78947368	1.0555	
PHE-CRESOLS	y = 13.054x - 0.067	3.0488	0.8169	y = 0.0079x + 0.0113	0.021	126.5822785	0.6991	
PHE-2,3,5,6-TETRACHLOROPHENOL	y = 9.2898x - 0.0408	2.2951	0.8483	y = -0.0043x + 0.0121	0.002	-232.5581395	-0.3553	
PHE-2.3.4.6-TETRACHLOROPHENOL	y = 8.5963x - 0.038	2.5427	0.8781	y = 9E-05x + 0.0097	2E-06	11111.11111	0.0092	
PHE-2.4-DICHLOROPHENOL	v = 7.5086x - 0.0395	2.3928	0.7629	y = 0.0031x + 0.0081	0.001	322.5806452	0.3827	
PHE-2 6-DICHLOROPHENOL	y = 2.0592x + 0.1705	1.5799	0.0102	v = 0.7926x - 0.0618	0.881	1.261670452	12.8252	
PHE-2-CHLOROPHENOL	v=11.131x - 0.0489	2.3212	0.8412	y = -0.005x + 0.0149	0.002	-200	-0.3355	
	y = 13 064y - 0.067	3 0488	0.8169	y = 0.0079x + 0.0113	0.0216	126.5822785	0.6991	

Best fit?

Both Freundlich and Langmuir isotherm equations evaluated. Better represented by Freundlich model:

> R² ranged from 0.76 t o .98 Kd ranged from 0.89 to 3.05

GLMs will be evaluated also!

- Both Freundlich and Langmuir isotherm equations evaluated.
- Better represented by Freundlich model:

R² ranged from 0.76 t o .98 Kd ranged from 0.89 to 3.05

GLMs will be evaluated also!

Equation for Predicting Advection Transport

$$V_s = Q/A \emptyset R$$
 " K (dh/dL)/ $\emptyset R$

R = Retardation factor

Freundlich, R = 1 +{[pb/Ø] kd}

Langmuir, $R = 1 + [pb/@] \{ab/(1 + a Ceq)^2\}$

Travel Time = L/V_s

A4 (210 × 297)

24

Contaminants Transport Calculations

Pertinent Information from Phase II investigation:

- Ground H2O elevations
- Flow direction
- Isopleth of equipotential lines
- Slug test method:
 *K values ranged from 1.87 x 10⁻⁷ to 1.30 x 10⁻⁵ m/s
 * & K as per Falling-Head Method; Ø; BD

Contaminant Isotherm	Freundlich KD	Travel Time (years)					
		July 24 2008 September 23 2008					
		BH-20	BH-21	BH-23	BH-20	BH-21	BH-23
BENZENE	2.0759	17245.33	2328.68	288.56	11487.40	1744.91	288.56
TOLUENE	2.2267	18254.92	2469.42	306.78	12159.91	1850.36	306.78
ETHYLBENZENE	2.6529	21108.28	2867.17	358.27	14060.57	2148.40	358.27
m & p- XYLENE	2.0786	17263.41	2331.20	288.89	11499.44	1746.80	288.89
o-XYLENE	2.471	19890.48	2697.41	336.30	13249.38	2021.20	336.30
F1 (C6-C10)	2.0252	16905.90	2281.37	282.44	11261.30	1709.46	282.44
PAH-ACENAPHTENE	0.892	9319.27	1223.81	145.53	6207.72	917.02	145.53
PAH-ACENAPHTYLENE	1.0766	10555.14	1396.09	167.83	7030.96	1046.11	167.83
PAH-ACRIDINE	1.037	10290.03	1359.14	163.04	6854.36	1018.42	163.04
PAH-ANTHRACENE	1.0172	10157.47	1340.66	160.65	6766.06	1004.57	160.65
PAH-BENZO(a)ANTHRACENE	0.9978	10027.59	1322.55	158.31	6679.54	991.00	158.31
PAH-BENZO(k)FLUORANTHRACENE	1.0114	10118.64	1335.24	159.95	6740.19	1000.51	159.95
PAH-BENZO(C)PHENANTHRENE	0.9588	9766.49	1286.16	153.60	6505.62	963.73	153.60
PAH-BENZO(e)PYRENE	1.0245	10206.34	1347.47	161.53	6798.61	1009.68	161.53
PAH-BENZO(a)PYRENE	0.9917	9986.75	1316.86	157.57	6652.34	986.74	157.57
PAH-CHRYSENE	1.0607	10448.69	1381.25	165.91	6960.05	1034.99	165.91
PAH-FLUORANTHENE	1.0163	10151.44	1339.82	160.54	6762.04	1003.94	160.54
PAH-FLUORENE	1.0659	10483.51	1386.11	166.54	6983.24	1038.63	166.54
PAH-2-METHYLNAPHTALENE	0.9971	10022.90	1321.90	158.22	6676.42	990.51	158.22
PAH-NAPHTALENE	0.9852	9943.23	1310.79	156.79	6623.35	982.19	156.79
PAH-PHENANTHRENE	1.2091	11442.21	1519.75	183.84	7621.85	1138.76	183.84
PAH-PERYLENE	1.1139	10804.86	1430.90	172.34	7197.30	1072.19	172.34
PAH-PYRENE	1.0857	10616.07	1404.58	168.93	7071.54	1052.47	168.93
PHE-CRESOLS	3.0488	23758.78	3236.64	406.11	15826.12	2425.25	406.11
PHE-2,3,5,6-TETRACHLOROPHENOL	2.2951	18712.85	2533.25	315.05	12464.94	1898.19	315.05
PHE-2,3,4,6-TETRACHLOROPHENOL	2.5427	20370.50	2764.32	344.96	13569.13	2071.34	344.96
PHE-2,4-DICHLOROPHENOL	2.3928	19366.94	2624.43	326.85	12900.64	1966.52	326.85
PHE-2,6-DICHLOROPHENOL**	1.5799	13924.67	1865.79	228.64	9275.46	1398.06	228.64
PHE-2-CHLOROPHENOL	2.3212	18887.59	2557.61	318.20	12581.34	1916.45	318.20
PHE-3 & 4-METHYLPHENOL	3.0488	23758.78	3236.64	406.11	15826.12	2425.25	406.11

Contaminant Mobility Index (CMI)				
Rating	Time (years)			
Fast	<100			
Medium	100-200			
Slow	>200			

Infiltration Gallery Design

PROPOSED INFILTRATION GALLERY SYSTEM (NTS)

ClO₂ Treatment Method

- Aboveground NAPL degradation
 - ClO₂ and UV exposure
- Reinjection of treated Groundwater with 10ppm ClO₂
- Radius of influence overlaps by 4" (shown below)

INFILTRATION GALLERY PROFILE (NTS)

Infiltration Gallery Notes

- Dedicated pump and treatment systems will be used for each monitoring well
- Treatment systems will be sheltered
- Reinjection of treated ground water will be up gradient
- Field monitoring of residual ClO₂ in the ground water will be performed

Fluorescein Tracer Applications

•Slightly soluble in water

- Visually detected
- Fluorophone
- Exhibit a yellow color/can appear red
 Non-toxic
- Inert

Analysed with a fluorometer / turbidimeter

Physical Model

Breakthrough Curve

Breakthrough Curve

Visual Assessment of Fluorescein Breakthrough Colour

Arrival time reflects advective transport through the physical model.

Field Pilot

Ongoing Monitoring.....

Conclusions

- CIO₂/UV effective treatment system for dissolved DNAPL plume
- No detectable dioxins or furans as by-products of the chemical reactions
- Travel time ranged from 145 to 80,817 years
- Public health risk & financial liabilities can be cost effectively / confidently managed

Thank You!

Questions?