CH2MHILL.

Assessment of Variability in Flux Chamber-based Soil CO₂ Efflux Measurements at Petroleum Remediation Sites

Ellen Porter- CH2M HILL, Calgary Remediation Technologist

October 17, 2014

Outline

- Why Perform Efflux Assessments?
- Technology
- Data Quality
- Uncertainties
 - Temporal and Barometric Variability
 - Site Geology and Ground Surface Cover
- Comparisons
 - Hydrocarbon Removal, Monitoring and Mass Budgeting
 - Efficiency and Cost
- Conclusions

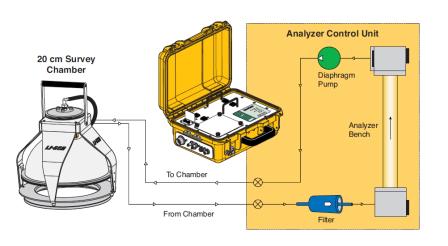
Introduction

- Gas exchange takes place between soil and atmosphere
 - Downward movement of oxygen (O₂) and upward venting of CO₂
 - Affected by factors that change temperature/pressure and moisture
- CO₂ is derived from respiration processes occurring in both shallow aerobic, and deeper anaerobic, ecosystems

Why Perform Efflux Assessment

- Semi-quantitatively delineate source zones free phase non-aqueous phase liquid (NAPL)
- Estimate site wide biodegradation
 - Better estimation of hydrocarbon removal rates
 - In lieu of groundwater natural attenuation indicator parameters (NAIPs) analysis
- Biodegradation vs mechanical extraction systems
- Monitored natural attenuation (MNA)
- Economical

Soil Flux System (LI-COR, Inc.)

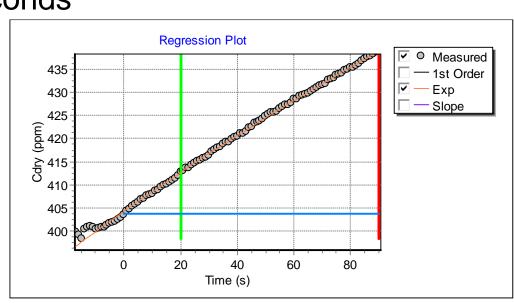


Equipment

- Ground surface collar
- Vented bellows-controlled flux chamber with rubber gasket
- Application software, analyzer unit (infrared gas analyzer) and pump

http://licor.com/env/products/soil_flux/

LI-COR Survey Procedures



Theory

- The rate of change of CO₂ concentration inside a vented flux chamber is equated to flux
- Uses early time data before chamber accumulation effects occur
- Deadband = 20 seconds
- Observation Rate = 90 seconds
- Post-purge = 30 seconds
- Minimum Number of Measurements = 3 *

Fall 2013 and Summer 2014 Multisite CO₂ Survey

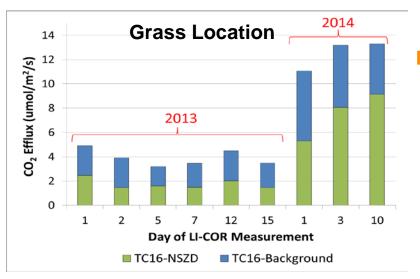
- 6 sites, 21 rounds of efflux monitoring, 163 locations, 1,529 measurements
- Site conditions from active gas plant to remote maintenance yard containing a variety of hydrocarbons

Site Name	Date(s) CO₂ Survey Performed	Type of Product	Release Age	Subsurface Soil Type	Estimated Size of LNAPL Footprint (ha)
Yukon	September, 2013 June, 2014	Arctic Diesel	Since 1960s	Fill, sand, and gravel	0.030
TransCanada ¹	September - October, 2013	Crude, Diesel,	Since 1966	Fill, silty sand	0.50
	July - August, 2014	NGLs		,,	
Ferrier 10-26	October, 2013	Crude	Since 1971	Clay underlain by sandstone bedrock	0.42
Ferrier 09-22	September, 2013	NGLs, LPG	Since 1968	Sand underlain by sandstone bedrock	0.98
Ferrier 01-20	September, 2013	Waste Oil	Since 1960s	Fill, silty sand, and gravel	1.3
Ferrier 07-20	October, 2013	Crude, NGLs	Since Aug 2006	Silt and clay underlain by sandstone bedrock	5.5

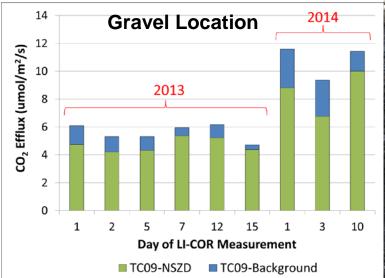
Background Correction

- Measurements averaged at each location for each monitoring round
 - 55 background locations
 - 108 locations over the LNAPL footprint
- NSZD-derived CO₂ efflux (q_{CO₂-NSZD})

$$q_{CO_2\text{-NSZD}} = q_{CO_2\text{-Total}} - q_{CO_2\text{-Background}}$$


 Correction made for each monitoring round which spanned 3-5 hours time (15-30 collars)

Background CO₂ Contribution



Background ranged from 0.6 to 5.3 μmol/m²/s (average 1.3 μmol/m²/s) – 2013

Background ranged from 0.8 to 5.8 μmol/m²/s (average 3.2 μmol/m²/s) – 2014

Total CO₂ Efflux Measurement Precision

Site	Label	IV Date	Exp_Flux	Exp_R2	Surface Cover	Pressure Average	Temperature Average	CO ₂ Efflux Average	Std Dev	% of Avg
			(μmol/m²/s)		(kPa)	(°C)	(µmol/m2/s)		
		9/29/2013 15:39		0.9903	Sand and gravel,	86.62	19.40	0.78	0.04	5%
Ferrier 09-22	01 - Day 1	9/29/2013 15:41	0.75	0.9946						
		9/29/2013 15:44	0.82	0.9948	dry					
		10/6/2013 9:11	1.81	0.9989	Silt, some clay and					
Ferrier 07-20	01 - Day 1	10/6/2013 9:13	1.77	0.9986	sand, light brown,	88.59	5.52	1.80	0.03	1%
		10/6/2013 9:16	1.82	0.9982	grass/alfalfa					
Yukon 01E		9/14/2013 13:17	0.97	0.9929	-				0.10	13%
		9/14/2013 13:19	0.70	0.9932				0.80		
	01B - Day 1	9/14/2013 13:22	0.79	0.992		89.30	13.65			
		9/14/2013 13:24	0.76	0.9946						
		9/14/2013 13:26	0.79	0.9945						
		9/16/2013 12:54	1.43	0.988	Gravel covered, compacted		6.22	0.79	0.44	
	01B - Day 3	9/16/2013 12:56	0.53	0.9675		88.87				56%
	OID - Day 3	9/16/2013 12:58	0.51	0.9662		00.07				
		9/16/2013 13:01	0.67	0.9863						
	01B - Day 4	9/17/2013 13:46	0.97	0.9879		,		0.69	0.25	
		9/17/2013 13:49	0.51	0.9921		88.34	3.34 2.14			36%
		9/17/2013 13:51	0.59	0.9885						

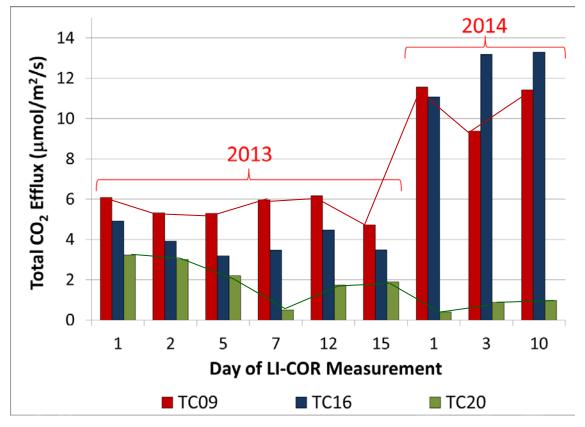
- Across all sites, the std dev ranged from 3.1% to 30% of the average efflux (mean of 16%) in 2013; 9% to 13% of the average efflux (mean of 11%) in 2014
 - ~0.3 μmol/m²/s on overall average of 2.1 μmol/m²/s total CO₂ efflux 2013
 - ~0.3 μmol/m²/s on overall average of 2.8 μmol/m²/s total CO₂ efflux 2014

Range of Total Efflux

Field replicate measurement results within ~0.25 μmol/m²/s in 2013; ~7.2 μmol/m²/s in 2014

Corrected efflux ranged from 0 to 10.5 μmol/m²/s

(average 1.27 μ mol/m²/s)



Total CO₂ Efflux Multiday Measurements

Day 1 – Sun, 9-15 $^{\circ}$ C, <5 km/h wind

Day 2 – Sun, 9-11°C, up to 30 km/h wind

Day 5 – Rain, 3-6°C

Day 7 — Light rain, 4-7°C, up to 15 km/h wind

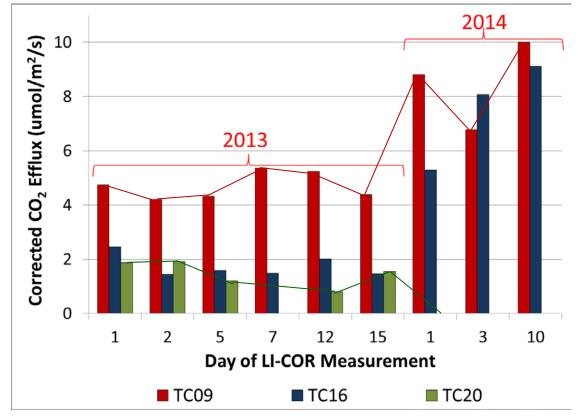
Day 12 — Sun, 11-17°C, up to 45 km/h wind

Day 15 — Sun, 10-14°C, up to 20 km/h wind

Day 1 – Rain overnight, sun, rain, and thunder, 16-24°C, up to 18 km/h wind

Day 3 – Fog, sun, 19-35°C, up to 15 km/h wind

Day 10 – Rain overnight, sun, 14-28°C, up to 12 km/h wind


Average variation in total CO₂ efflux over two week period was 1.1 μmol/m²/s (2013) and 1.6 μmol/m²/s (2014) at all locations with multiple day measurements

Corrected CO₂ Efflux Multiday Measurements

- **Day 1** − Sun, 9-15°C, <5 km/h wind
- **Day 2** Sun, 9-11°C, up to 30 km/h wind
- **Day 5** Rain, 3-6°C
- Day 7 Light rain, 4-7°C, up to 15 km/h wind
- **Day 12** Sun, 11-17°C, up to 45 km/h wind
- **Day 15** Sun, 10-14°C, up to 20 km/h wind
- Day 1 Rain overnight, sun, rain, and thunder, 16-24°C, up to 18 km/h wind
- **Day 3** Fog, sun, 19-35°C, up to 15 km/h wind
- Day 10 Rain overnight, sun, 14-28°C, up to 12 km/h wind
- Similar average variation as total CO₂ efflux, 1.0 μmol/m²/s (2013), 1.2 μmol/m²/s (2014)
- Suggests combination of subsurface changes occurred to cause variability

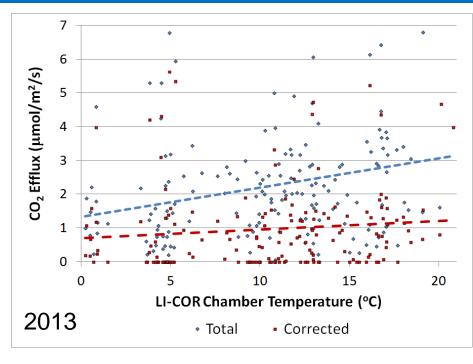
$$2C_8H_{10} + 17O_2 --> 16CO_2 + 10H_2O$$

Site Name	Type of Ground Cover	Average Background CO ₂ Efflux (μmol/m²/s)	Avg. Corrected CO ₂ Efflux (μmol/m ² /s)	Average LNAPL Degradation Rate (g/m²/d)
Yukon	Grass	3.0	3.5	4.3
Ferrier 01-20	Grass	5.3	3.4	4.2
TransCanada	Grass	5.0	1.9	2.3
Ferrier 10-26	Grass	2.1	1.5	1.9
Ferrier 07-20	Grass	1.9	0.85	1.1
Yukon	Grass	1.2	0.79	0.96
TransCanada	Grass	2.2	0.45	0.55
Ferrier 09-22	Grass	2.3	0.20	0.24

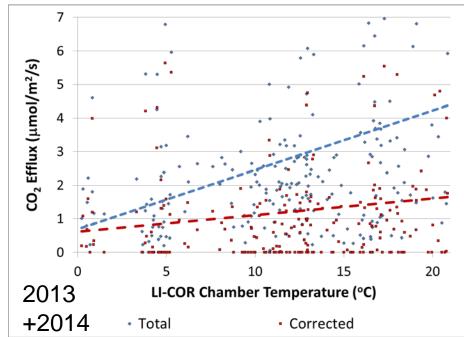
$$2C_8H_{10} + 17O_2 --> 16CO_2 + 10H_2O$$

Site Name	Type of Ground Cover	Average Background CO ₂ Efflux (μmol/m²/s)	Avg. Corrected CO ₂ Efflux (μmol/m²/s)	Average LNAPL Degradation Rate (g/m²/d)
TransCanada	Gravel	2.3	2.0	2.5
Yukon	Gravel	0.83	1.1	1.6
TransCanada	Gravel	0.95	1.2	1.6
Ferrier 01-20	Gravel	0.81	0.91	1.1
Yukon	Gravel	1.1	0.68	0.83
Ferrier 09-22	Gravel	0.62	0.36	0.44
Ferrier 10-26	Gravel	0.88	0.23	0.29
Ferrier 07-20	Gravel	-	-	-

Fall 2013 and Summer 2014 Multisite CO₂ Survey



- 6 sites, 21 rounds of efflux monitoring, 163 locations, 1,529 measurements
- Site conditions from active gas plant to remote maintenance yard containing a variety of hydrocarbons

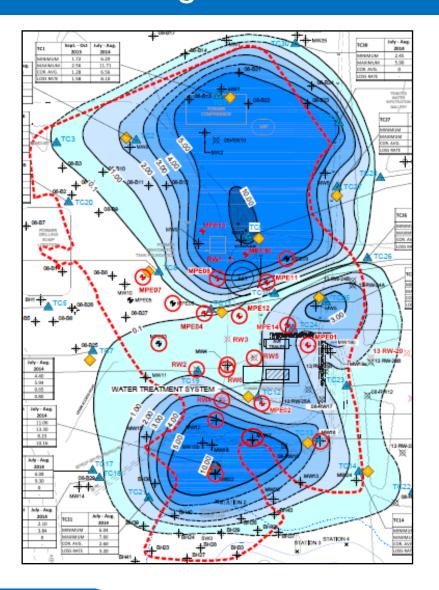

Site Name	Date(s) CO ₂ Survey Performed	Release Age	Estimated Size of LNAPL Footprint (ha)	Estimated Sitewide NSZF Rate (kg/yr)
Yukon	September, 2013	Since 1960s	0.030	120
rakori	June, 2014	Cirio 10000	0.000	146
TransCanada ¹	September - October, 2013	Since 1966	0.50	1,900
Tansoanada	July - August, 2014	Office 1300	0.50	6,842
Ferrier 10-26	October, 2013	Since 1971	0.42	1,963
Ferrier 09-22	September, 2013	Since 1968	0.98	2,130
Ferrier 01-20	September, 2013	Since 1960s	1.3	8,307
Ferrier 07-20	October, 2013	Since Aug 2006	5.5	25,674

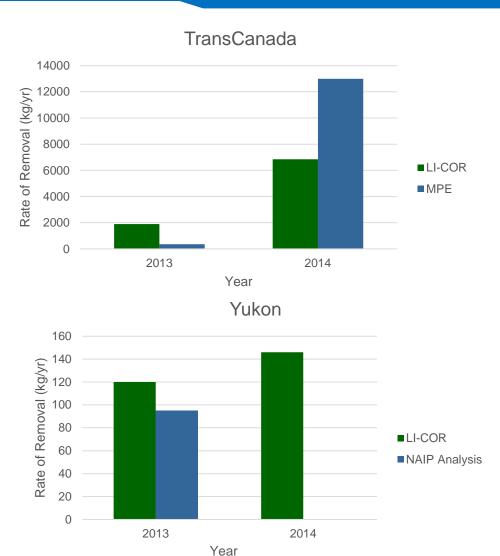
Ground Surface Temperature

Dampened effect of temperature to a level comparable to measurement variability (<0.6 µmol/m²/s)</p> Discernible effect on total
 CO₂ efflux

Pressure, Moisture, and Wind

- Indiscernible effect with pressure and moisture content
- Wind is a non-issue if instrument rubber gasket is in good shape and set correctly to isolate chamber from wind effects
 - Tortuous chamber vent prevents wind influencing measurements




LI-COR and Groundwater Monitoring

30 LI-COR locations v's 30 groundwater samples

	LI-COR	Current GW Sampling
Time	3-5 hrs/round	3 days/round
Cost	~\$1800 ^a	~\$4500 - \$4000 ^b
Field Staff Required	1	2

^a First month - ~\$1800, subsequent months - ~\$1000

^b NAIPs only – nitrate/nitrite, sulphate/sulphite, alkalinity, ferrous iron, dissolved methane, dissolved oxygen and dissolved carbon dioxide.

Conclusions

CO₂ Efflux Assessment

- Semi-quantitatively delineate free phase NAPL
- More realistic estimates of hydrocarbon removal rates through biodegradation
- LI-COR precision observed: ~ +/- 0.3 μmol/m²/s (total efflux)
- Time and cost efficient
- Fewer field staff required

Variability

- Ecosystem-related (background) contributions to total CO₂ efflux are generally small ~1.3 – 3.2 μmol/m²/s
- Ambient air temperature showed most significant effects to total efflux

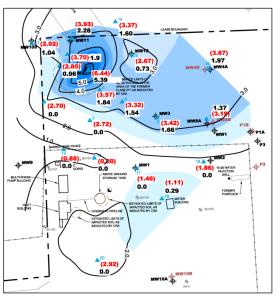
Managing Variability

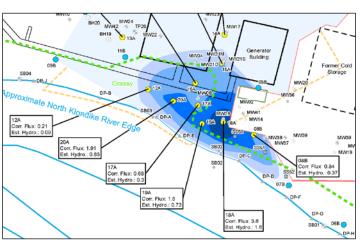
- Standard installation protocol
 - 6 Standard weighted tamping device for re-compaction of soil to "natural" conditions
- Wait at least 4 hours after a precipitation event
- Maintain a 1.5-m distance from ground surface disturbances
- Regular practice of duplicate efflux systems approximately
 1 m
- Create a detailed method for background corrections

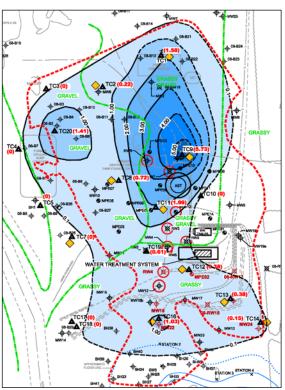
Conclusions

Further work

- Next step assess effects of subsurface changes on efflux (i.e., seasonality) – Data analysis underway
- Investigate effects of depth
- Use at more sites across Canada
- Recognize CO₂ efflux monitoring as a method for monitoring NA and NSZD


Thanks to Co-Authors





- Darcy Bye TransCanada PipeLines Limited
- Ruth Hall Environment Yukon
- Amy Jimmo CH2M HILL, Edmonton
- Tom Palaia— CH2M HILL, Denver

Thank you for Your Time!

CH2MHILL.

Assessment of Variability in Flux Chamber-based Soil CO₂ Efflux Measurements at Petroleum Remediation Sites

Ellen Porter- CH2M HILL, Calgary Remediation Technologist

October 17, 2014

CH2MHILL.

Innovation that Solves Complex Local Challenges, Worldwide