

False Positive Detection of Naphthenic Acids in Groundwater Samples at a SAGD Facility near Ft McMurray

Aurore Kurc – Millennium EMS Solutions Ltd. Miles Tindal – Millennium EMS Solutions Ltd.

> toll free: 888.722.2563 www.mems.ca

Site Overview

SAGD Facility located near Ft McMurray, AB.

- 2009-2011:
 - Baseline Data Collection
 - Development of the Groundwater Monitoring Program
- 2011:
 - Development of Targets and Threshold (T&T)
 - Site construction.
- 2012:
 - Start of operations (incl. steaming)

Groundwater Monitoring Program

- Requirement under the EPEA Approval.
- Main aspects include:
 - Frequency of sampling
 - Geological units to monitored
 - Parameters to be analyzed
 - Development of targets and thresholds (T&T)
 - Groundwater Response Plan
 - Reporting requirements

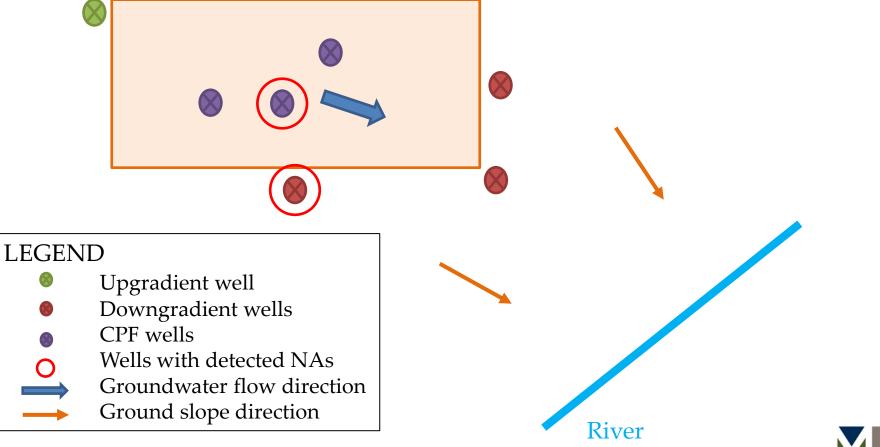
Targets and Thresholds

- Target:
 - 95th percentile calculated from background concentrations
- Threshold:
 - AB Tier 1 Guidelines; or
 - Lower Athabasca Regional Plan (LARP) value; or
 - Highest background value.

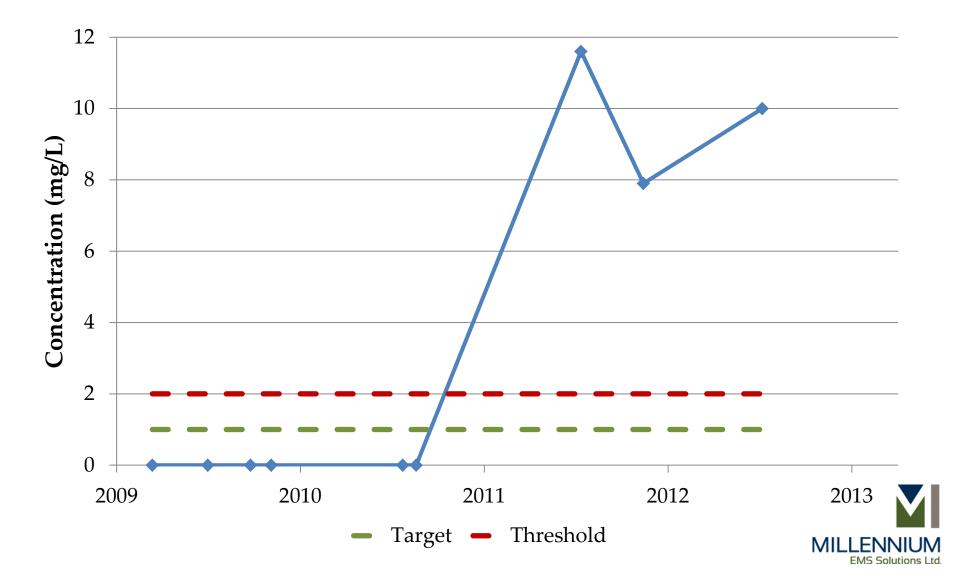
Targets and Thresholds

Typically, bi-annual sampling values are compared to targets and thresholds:

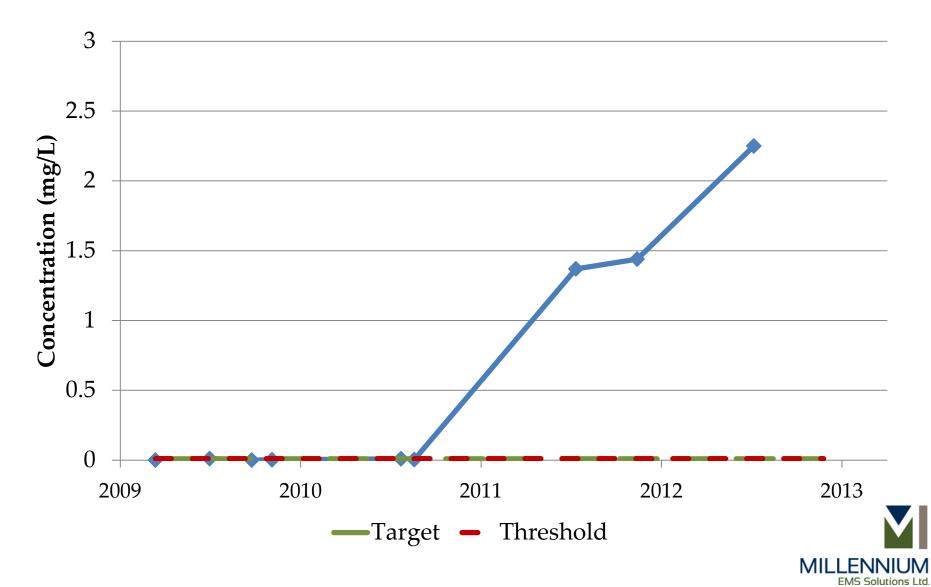
- Value above Target triggers:
 - Lab check
 - Resampling/ confirmation
 - Flagging (for trend)
- Value above Thresholds triggers:
 - Lab check
 - Resampling/ confirmation
 - Review for Trend:
 - No trend: flagging (extreme not captured during baseline)
 - Rising trend: source investigation and plume delineation


Parameters above Threshold at the Site

- 2012 and spring 2013 sampling events: first detection of parameters above target and thresholds :
 - Toluene, xylenes, hydrocarbons F1 and F2;
 - Phenols; and
 - Naphthenic Acids.
- Naphthenic Acids: indicator of spill/ groundwater contamination during SAGD Operations under the LARP (2 mg/L).

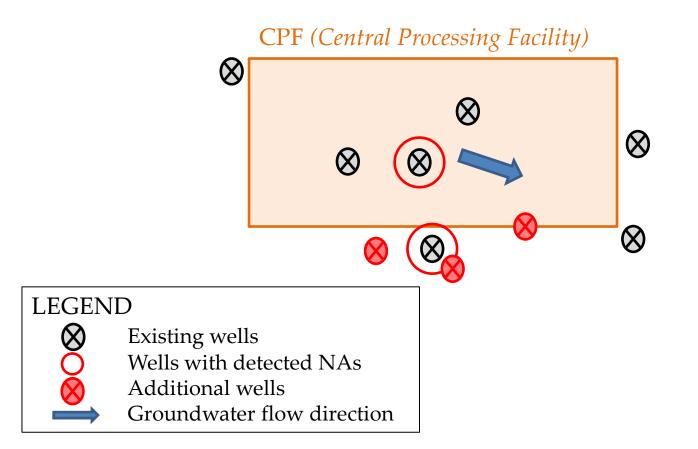

Plant Site Map

CPF (Central Processing Facility)



Concentrations of Naphthenic Acids

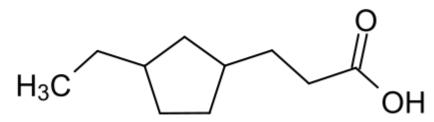
Concentrations of Phenols


Groundwater Response Plan

- Groundwater Response Plan was initiated:
 Confirm results with the lab.
 - Resample and confirm Threshold exceedance
- Parameter(s) confirmed above threshold
- Source investigation and impact delineation initiated:
 - Review/ spill event record (if available)
 - Conduct soil sampling (if applicable)
 - Drill additional wells

Plume Delineation

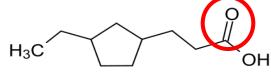
2013: drilling of additional monitoring wells
Locations constrained to existing lease boundaries



Objective of Investigation

- Determine the source of the impact.
- Focus on the naphthenic acids.

So what are naphthenic acids?


- Carboxylic acid functional group; and
- 1 to 6+ cyclopentyl and/or cyclohexyl rings; and
- 9 to 50+ carbon atoms.

Example of a Naphthenic acid

- The typical method used by labs to detect naphthenic acids is the Fourier Transform Infra-Red (FTIR).
 - Detects resonance in the vibrations of particular bond, in this case the C=O bond in the carboxylic group.

Naphthenic acid

Can also detect other carboxylic acids (such as acetic, propionic and butyric acids) if present in the sample, creating false positive.

Acetic acid

- FTIR indicated naphthenic acids in groundwater: unexpected and unlikely result
- Conducted further laboratory analysis to investigate the positive detection of naphthenic acids by FTIR in groundwater
 - Thank you to Dr. Igor Volochtchik and AGAT Laboratories

- Lab analysis investigation:
 - Groundwater sample
 - Run open-scan GC-MS
 - Analyze sample for volatile fatty acids to confirm presence and concentration.
 - Spike deionized water with similar concentrations of volatile fatty acids as groundwater sample and analyze for naphthenic acids by FTIR.
- These two techniques together can show whether volatile fatty acids could account for the naphthenic acid measured.

- LC-MS/MS would be required to definitively exclude any possibility of naphthenic acid presence.
 - One lab in B.C. offering the analysis
 - Any Alberta based laboratories options?
 - Other options for detecting naphthenic acids only?

Results

Chemical	Groundwater Sample	Spiked DI water
	(mg/L)	(mg/L)
Volatile Fatty Acids		
Acetic acid	192	200
Propionic acid	20	20
Butyric acid	27	20
Naphthenic Acids	2.6	1.6
(by FTIR)		

- Open scan analysis detected the presence of a range of plant-related chemicals:
 - *phenylpropanoic acid, benzoic acid, 3-ethyl-phenol, hexanoic, acid, camphor, cyclohexanecarboxylic acid, an unknown terpene, an unknown siloxane, and pinocamphone*

Conclusion

- Naphthenic acids detected, among other parameters, above T&T during compliance monitoring.
 - Triggered the GW Response Plan:
 - Resampling;
 - Delineation; and
 - Confirmation of Concentrations.
- Presence of volatile fatty acids in significant quantity.
- Volatile fatty acids likely creating a false positive detection of naphthenic acids.
- Likely no likely no naphthenic acids present in the groundwater sample, but naphthenic acids can only be ruled out by performing a LC-MS analysis.

Conclusion

- Chemical signature of the groundwater impact is not consistent with a release of hydrocarbon fuel or crude oil (no benzene).
- Based on the phenols and other biogenic compounds concentrations, it is however consistent with the decay of coniferous and other plant-based organic matter.
- CPF pad was built by adding fill on top of the native material (peat, moss and brushed coniferous material) without stripping.
- We are likely seeing the degradation of the organic matter trapped below the pad fill.

Questions?

