

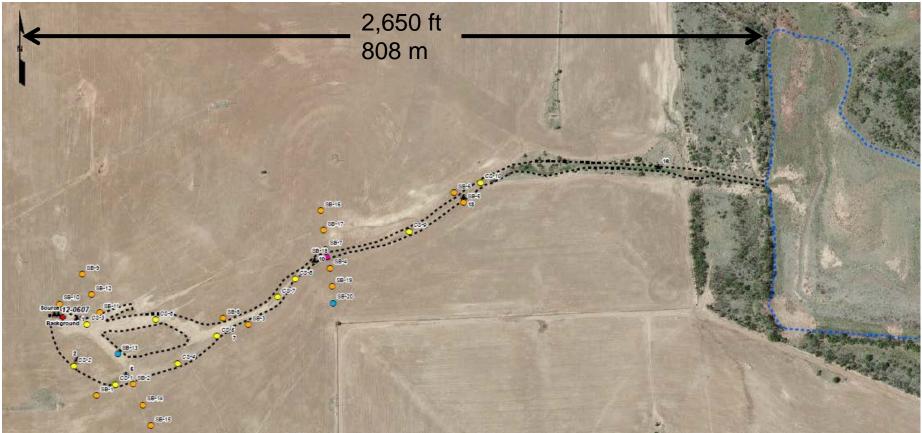
Bright People. Right Solutions.

Vertical Distribution, Attenuation, and Remediation of Brine Releases, Wichita County, Texas

Jeffrey R. Hale, PG, PGeo, Kleinfelder Brad A. Woodard, EI, CPG, Kleinfelder Drew Hall, Halcyn Resources Corporation

Study Location and Setting

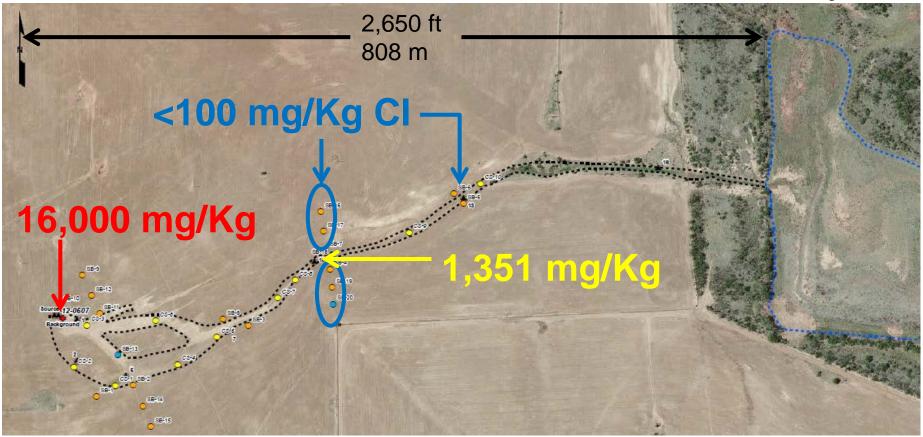
Soil Condition Summary


- Surficial salt staining / precipitation
- Stressed / damaged vegetation
- Impaired soil structure
- Reduced infiltration

Investigation Sampling Approach

Legend

- Spill Location
- Titan Sample Locations (10/02/2012)
- Kleinfelder Composite Sample (3/29/2013)


Kleinfelder Soil Boring (3/28/2013) = Estimated Disturbance Boundary
0-2' Seasonal Pond

0-3

0-4'

Chloride Concentration Summary

Legend

- Spill Location
- Titan Sample Locations (10/02/2012)
- Kleinfelder Composite Sample (3/29/2013)

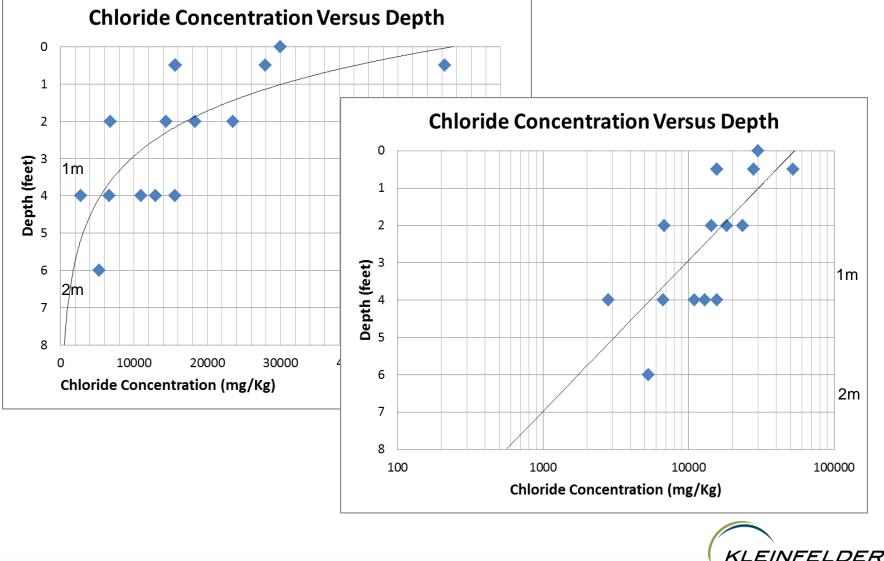
Kleinfelder Soil Boring (3/28/2013) = = + Estimated Disturbance Boundary

∩-4'

Seasonal Pond

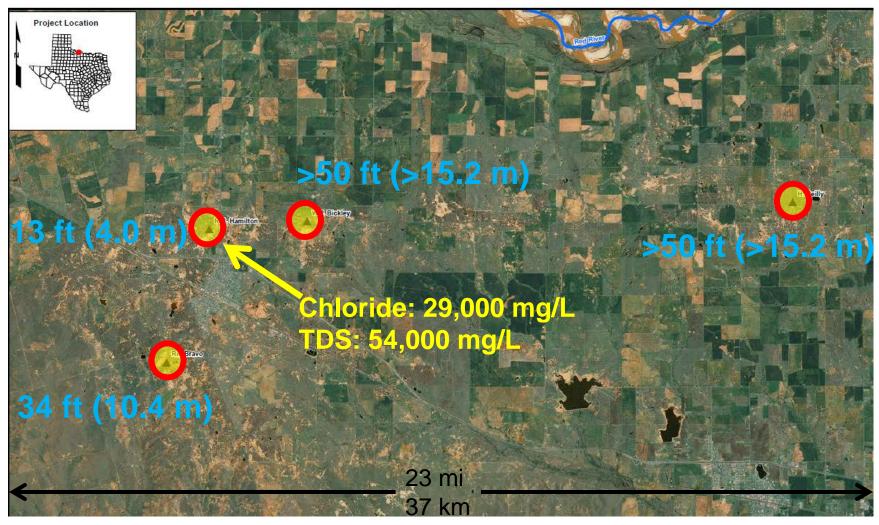
Vertical Data Evaluation

- Vertical distribution of chloride evaluated by combining data from multiple nearby leases with similar climate, soil, receptor, and depth to groundwater conditions
- Combined data provide more robust data set
- Data evaluated correspond to max surface soil concentration for each lease with 2 or more subsurface samples
- Analysis is conservative / protective as max results are extrapolated to broader area
- Data extrapolated with depth
- Evaluate data in context of regulatory criteria, prevailing groundwater levels, API modeling study, recommended remediation depths



Soil Data Summary

Chloride (mg/kg)	Depth (ft-bgs)	Lease	Sampling Date			
30,000	0					
6,700	4		October 2011			
5,300	6	Ricklov				
27,932	0.5	Bickley				
18,395	2					
12,947	4					
15,660	0.5					
6,805	2	Reilly				
2,814	4		March			
52,357	0.5		2013			
23,522	2	Hamilton				
15,637	4					
15,735	0.5					
14,393	2	Rio Bravo				
11,004	4					



Vertical Soil Data Distribution

Bright People. Right Solutions.

Groundwater Conditions

DTW (mode) Wichita County = 23 ft (7 m)

Evaluation Criteria and Constraints

- Draft Field Guide for the Assessment and Cleanup of Produced Water Releases (Railroad Commission of TX)
 - 3,000 mg/kg chloride generally protective of groundwater, assuming complete soil leaching or runoff pathway with a 10 fold dilution of leachate in the receiving aquifer or surface water body

○ 300 mg/L groundwater chloride concentration criterion

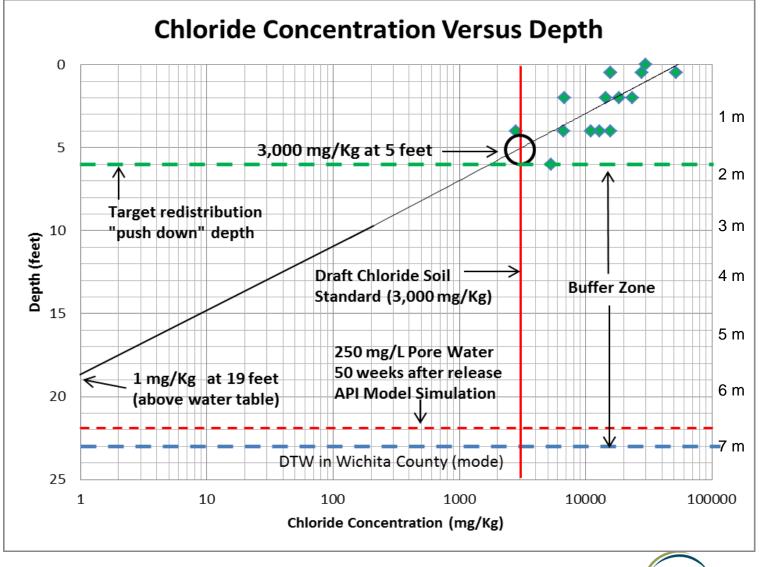
 Groundwater Database Report for Wichita County (Texas Water Development Board)

C 23 feet (7 m) modal depth to groundwater in Wichita County

- Modal depth represents most typical occurrence
- <u>Secondary Drinking Water Regulations Guidance for</u> <u>Nuisance Chemicals</u> (U.S. EPA)
 - 250 mg/L secondary MCL for chloride due to salty taste

Evaluation Criteria and Constraints

- <u>Basic Guidelines for Remediation of Brine Spills</u> (Sublette Consulting, Inc.)
 - C "Rule of thumb: Salt must be pushed down at least 6 ft (1.8 m) to prevent capillary suction from drawing the salt back up into the root zone."
- Modeling Study of Produced Water Release Scenarios (American Petroleum Institute [API])
 - C Presents modeled depth of produced water infiltration for a pore water chloride concentration of 250 mg/L
 - $\, \subset \,$ Model simulations based on six variables
 - Climate
 - Depth to groundwater
 - Soil type
 - ⊂ Dispersion length
 - Release concentration
 - Height of release



Evaluation Criteria and Constraints

- Selection of comparable API produced water release scenario
 - Humid Climate more applicable and conservative; Wichita County is in a region classified as Subtropical Subhumid
 - Depth to Groundwater Table = 9.8 feet (3 m) most representative of site conditions relative to alterative scenario (98 feet [30 m])
 - Sand Soil Type consistent with field observations / most conservative soil type
 - C Brine Release Height = 2 feet (0.6 m) corresponds to depth of drainage channels in which produced water release could accumulate / conservative height relative to unconstrained surface release
 - \bigcirc Dispersion Length = 0.3 feet (0.1 m)
 - \bigcirc Duration since release = 50 weeks maximum duration modeled

KLEINFELDER Bright People. Right Solutions.

Soil Data, Criteria, and Constraints

KLEINFELDER Bright People. Right Solutions.

Results of Evaluation

- Soil chloride concentrations attenuate logarithmically with depth
- C Extrapolated concentration attains 3,000 mg/Kg at 5 feet (1.5 m)
- 18-foot (5.5 m) buffer distance from 3,000 mg/Kg concentration to typical depth to groundwater (23 feet [7 m])
- Chloride concentrations in soil are extrapolated to attenuate to 1 mg/Kg at a depth of 19 feet (5.8 m) above the typical depth to water
- Comparable and conservative API modeling scenario indicates that chloride concentration in pore water is expected to attain 250 mg/L at a depth of 22 feet (6.7 m), above the typical depth to groundwater
- Feasible to flush salt to depth below capillary suction and root zone without adversely impacting groundwater

Remedial Approach

- Redistribute salt impact via vertical leaching to buffer zone
 - Below 6-foot (2 m) target capillary suction depth
 - C Above water table (23 feet [7 m]) (modal dtw)
 - $\ensuremath{\mathbb{C}}$ Reduced concentration in buffer zone via dilution/dispersion
- Leachate recovery for groundwater protection, as necessary
- Promote cation exchange of Ca²⁺ for Na⁺
- Restore soil nutrients, organic matter, structure, revegetate and monitor

Remediation Methods

- Salt Redistribution
 - Promote infiltration through disking/tilling
 - Add organic bulking agent (weed-free hay)
 - Supplement precipitation with irrigation
- Groundwater Protection
 - Installed drains at shallow groundwater site (13 ft-bgs [4 m-bgs])
 - \bigcirc 5 feet (1.5 m) deep
 - Central drain 250 ft (76 m) connected to recovery sump
 - \bigcirc Three laterals 50 ft (15 m) long
- Cation Exchange
 - ⊂ Addition of Ca++NhanceTM and marble dust / lime

Soil Restoration

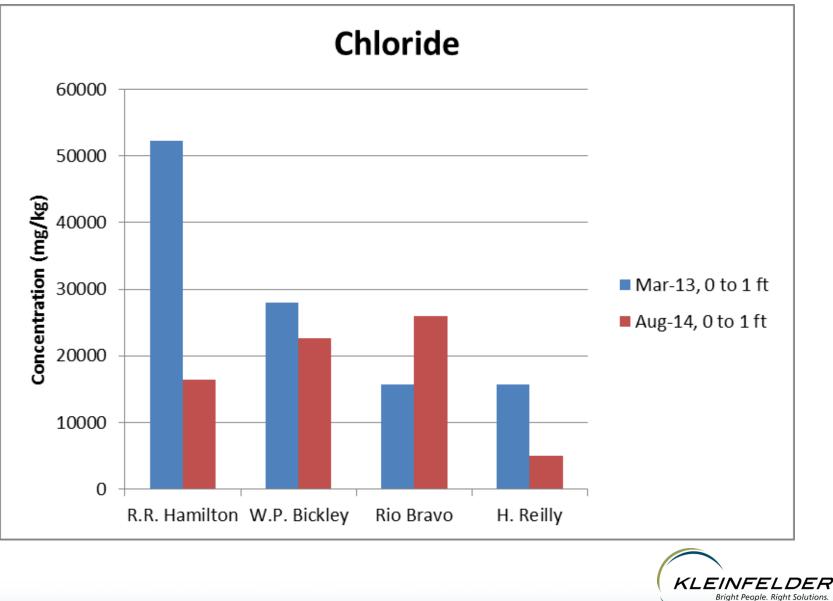
- \bigcirc Tilling, ripping, disking of soil.
- Addition of weed-free hay
- C Re-vegetate

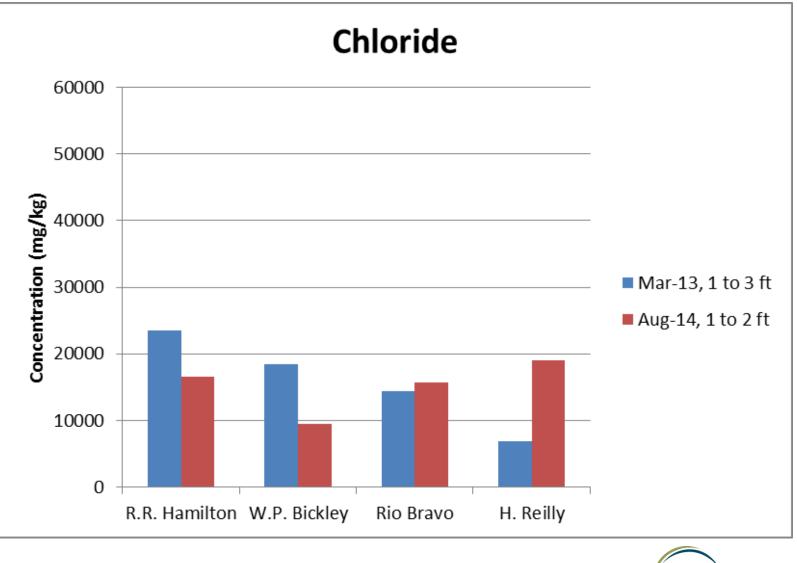
Remediation Methods

Application Quantities

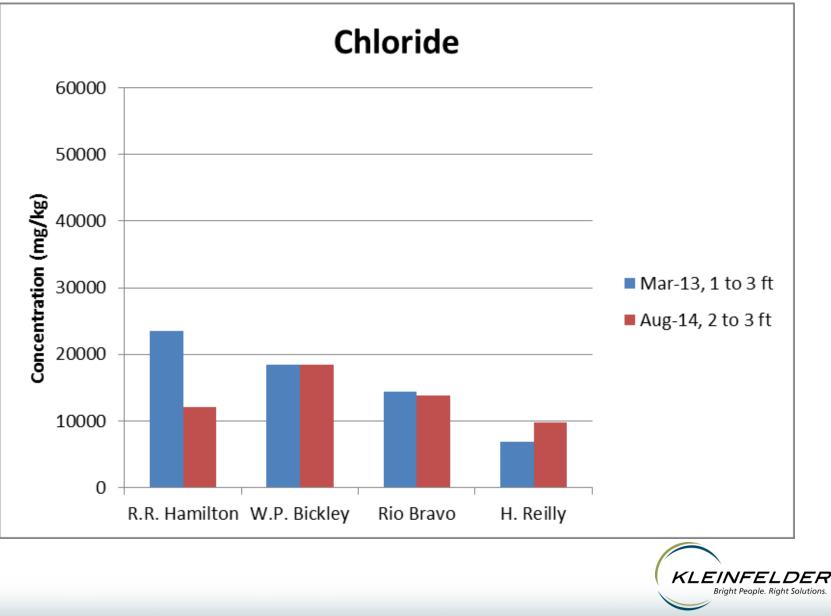
- ⊂ 1,742 lbs (790 kg) Ca++Nhance[™] and marble dust per acre (0.4 hectare)
- 5.5 tons (5 metric tonnes) per acre (0.4 hectare) weedfree hay broadcast-spread across each remediation area and worked into the soil to improve drainage and tilth.

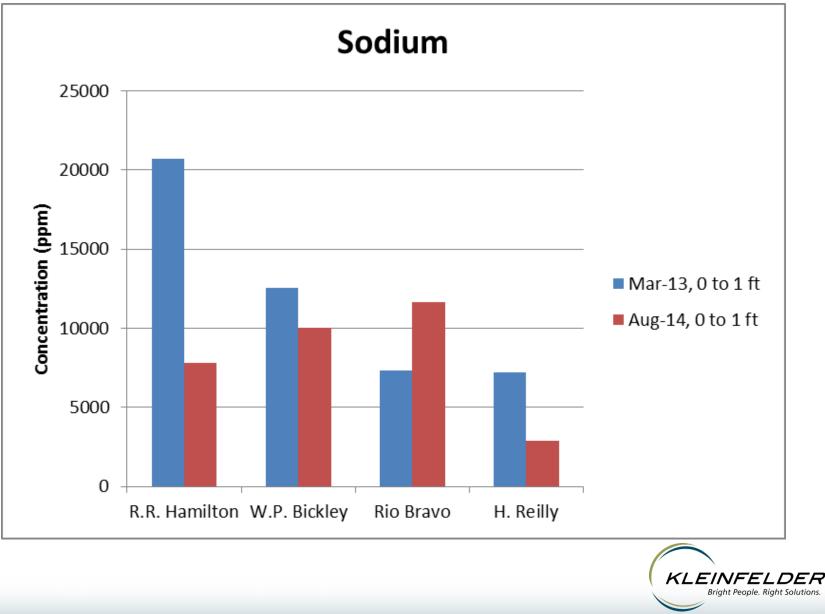
			March		June		
Lease Name	Acres	Hectares	Gallons	Liters	Gallons	Liters	
R. R.	1.4	0.6	12,000	45,4250	12,000	45,4250	
Hamilton	1	0.4	12,000	43,4230	12,000	40,4200	
W. P. Bickley	1.7	0.7	6,000	22,712	6,000	22,712	
Rio Bravo	0.4	0.2	2,000	7,571	2,000	7,571	
H. Reilly	2.5	1.0	12,000	45,4250	12,000	45,4250	
	1.2	0.5	12,000	40,4200	12,000	45,4250	

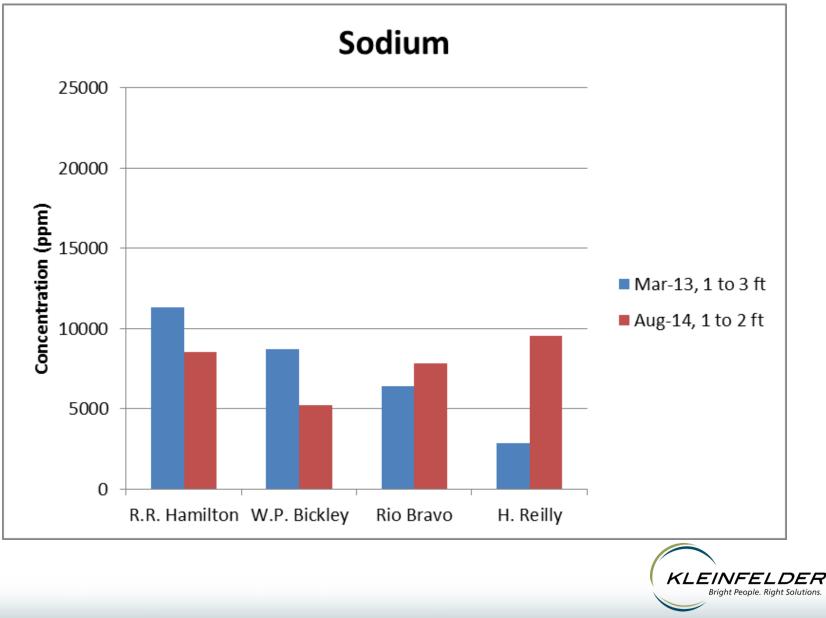

Bright People. Right Solution:

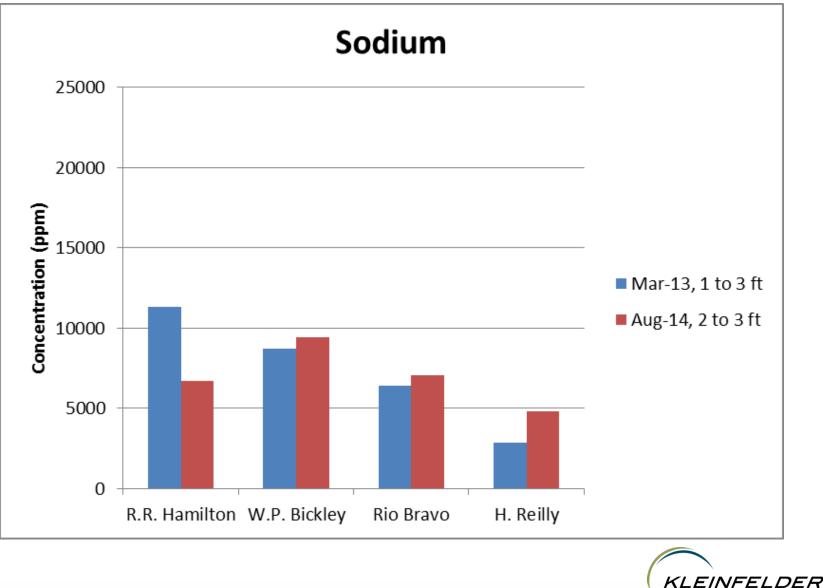

Water Applied

Lease Name	R.R. Hamilton Lease			W.P. Bickley			Rio Bravo Lease			H. Reilly Lease		
Sample Name	HAM-CS-0-1	HAM-CS-1-2	HAM-CS-2-3	BIK-CS-0-1	BIK-CS-1-2	BIK-CS-2-3	RB-CS-0-1	RB-CS-1-2	RB-CS-2-3	RIL-CS-0-1	RIL-CS-1-2	RIL-CS-2-3
Sample Depth (ft)	(0 - 1)	(1 - 2)	(2 - 3)	(0 - 1)	(1 - 2)	(2 - 3)	(0 - 1)	(1 - 2)	(2 - 3)	(0 - 1)	(1 - 2)	(2 - 3)
Parameter	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Boron (ppm)	0.4	0.4	0.4	0.3	0.3	0.5	0.2	0.1	0.1	0.1	0.6	0.6
Calcium (ppm)	877.3	639.4	405	1,568.7	405.8	920.4	1,858	891	672.2	264.8	928	443.4
Chloride (ppm)	16,402.8	16,522.7	12,125.5	22,669	9,508.4	18,485.3	26,032.5	15,707.8	13836.6	4,960.2	18,966.6	9,826.7
EC (µmhos/cm)	53,610	54,420	40,980	71,400	32,910	60,900	81,000	51,840	45,870	18,600	61,500	33,240
ESP	43.3	49.3	48.2	13.7	44.5	48.6	46.8	45	46.2	37	48	38.2
EPP	6.4	7.1	7.8	6.2	6.4	6.4	7.7	6.4	6.8	7	6.5	5.8
Magnesium (ppm)	466	354.5	245.2	642	161.6	387.9	538.8	327.6	234.6	65.5	436.6	311.9
рН	7.8	7.8	7.9	7.9	7.7	7.8	7.5	7.8	7.8	7.1	7.8	7.7
PAR	0.3	0.4	0.5	0.3	0.3	0.3	0.5	0.3	0.4	0.4	0.3	0.2
Potassium (ppm)	78	82	81	90	50	74	146	73	71	45	81	46
SAR	53	67.4	64.6	53.9	55.7	65.6	61	56.9	59.6	41	64.1	43.1
Sodium (ppm)	7,806.1	8,557.3	6,678.4	10,029.9	5,244.9	9,408	11,614.8	7,818.1	7,039.5	2,875.7	9,568.7	4,838.4
TSS (ppm)	35,383	35,917.2	27,046.8	47,124	21,720.6	40,194	53,460	32,214.4	30,274.2	12,276	40,590	21,938.4
Soil Texture	Medium	Fine	Fine	Medium	Fine	Medium	Fine	Fine	Fine	Medium	Medium	Fine


Chloride: 4,960 to 26,000 mg/Kg EC: >32 mmhos/cm SAR: >41







Bright People. Right Solutions.

Conclusions

- Chloride and sodium concentrations have been reduced in shallow interval (one exception)
- Chloride and sodium reduction occurred
 - C At every interval beneath R.R. Hamilton
 - At shallow to intermediate depths beneath W.P. Bickley
 - Only in the shallow interval of H. Reilly
 - \bigcirc Not at all at Rio Bravo
- Increased concentrations at depth is attributed to flushing and redistribution of salt ions to these depths
- Deep salt reduction at Hamilton attributed to presence of drainage tiles making water less available for capillary re-mobilization
- Gradual improvement requiring additional application while remaining protective of groundwater

Thank You