

Case Study:

Full-Scale *in situ* Electrical Resistive Heating (ERH) Used for the Remediation of a DNAPL Source Zone

West Source Area OMC Canada, Peterborough, Ontario

RemTech 2014, Banff

Site History: Outboard Marine Corporation (OMC) of Canada Peterborough, Ontario

Small Engine Manufacturing

Environmental Legacy

Site Characterization: Investigations

- Phase 2 type ESAs in the early-2000's identified TCE-DNAPL impacts below the warehouse.
- Detailed aquitard-aquifer interface assessments in mid-2000's to characterize: aquitard surface topography, lateral DNAPL distribution, and penetration of impacts into the aquitard (fate and transport)
- Ongoing soil and groundwater sampling to assess: waste classification, contaminant migration, and remedial options.
- High resolution Membrane Interface Probe (MIP) and Electrical Conductivity assessment to define DNAPL source zone boundary with more precision.

Conceptual Site Model:

Request for Proposal & Contracting Method:

- Request for proposal prepared based on a performance based contract.
 - Included very detailed conceptual site model including: physical geology & hydrogeology, contaminant distribution, details on previous remedial actions including interim P&T and chemical oxidation trials.
 - Defined remediation performance criteria (for payment) for soil and groundwater and the metrics used to assess performance.
 - Selection criteria included rankings for: contractor experience, remediation schedule, technology applicability, prior success and cost.
 - Did NOT defined or specify a specific remediation technology or method.
- Allowed for contractors to present and offer innovative solutions, or multiple solutions for consideration

Contractor & Technology Selection:

- 9 companies invited to bid: 3 general contractors, 3 in situ/ex situ bioremediation specialists, 3 thermal specialists.
- 5 bids received with options including *in situ/ex situ* bioremediation, chemical oxidation, excavation, and electrical resistive heating with multiphase extraction. Costs ranged from \$2.85M to \$4.98M. Schedules ranged from less than 1 year to greater than 4 years.
- Electrical Resistive Heating combined with Multiphase Vacuum Extraction was the selected technology as proposed by Quantum Murray (general contractor) and McMillan-McGee (technology specialist) with a cost of approximately \$3.4M and a schedule of approximately 18 months.

Technology Overview:

Electrical Resistive Heating (ERH) or Electro-Thermal Dynamic Stripping Process (ET-DSPTM)

- Heating of the subsurface using electrical power.
- Transforming dissolved, sorbed and NAPL phase VOCs (specifically TCE for this project) to vapour thereby improving the subsurface recoverability of these contaminants.
- Boiling point of TCE approximately 85°C, Target temperature 100°C.

Multiphase Vacuum Extraction

• Simultaneous extraction of NAPLs, water, and vapours from the subsurface under vacuum.

Treated vapor

to atmosphere

Remediation Design Summary:

Two Main Components

1) Soil & Groundwater Heating (ET-DSP)

- 62 Electrode locations on a 6m triangular grid with PDS and water recirculation.
- 15 Temperature, pressure, vacuum sensors (with 9 depth discrete temperature sensors per location)

2) Multiphase Vacuum Extraction

- 27 Multiphase extraction wells placed through remediation zone
- Vapour and liquid treatment trains

Area to be remediated 1,250m² by 7m deep, or 8,750m³

Electrodes:

- Electrodes (62 locations, 124 electrodes)
 - Monitored instantaneous power and cumulative energy at individual electrodes.
 - Could adjust power delivery to control heating.
 - Water Injection system to prevent desiccation and maintain subsurface conductivity

Sensors:

- Temperature (15 locations, 132 sensors) & Pressure Sensors (10 locations)
 - Monitored instantaneous temperature to monitor uniformity of heating and process control.
 - Monitored pressure/vacuum for safety reasons (assess to potential buildup of steam).

Extraction Wells:

- Multiphase Extraction Wells (27 locations)
 - Monitored influent vapour concentrations, temperature, vacuum pressures and flow rates for continuous process optimization.

Extraction & Treatment:

Combined Influent (Air, vapour, groundwater and NAPL)

- Variable speed high vacuum extraction pump,
- Heat exchangers & vapour-liquid separators

Vapour Treatment

- Primary granular activated carbon (GAC) with stream regeneration and contaminant recovery
- Secondary/sacraficial GAC

Liquid Treatment

- DNAPL/LNAPL/Water Separator, Air Stripper, GAC
- Allowing for the injection of treated water

Remediation Progress Monitoring

Achievements:

- DNAPL removed (<<1% rule, none measured, approx. 2,000 kg in recovery tank)
- 99.4% mass reduction of chlorinated solvent impacts (in soil and groundwater)
 - Pre-Remediation mean [TCE] 40,000 to 80,000 ug/L & max [TCE] >300,000 ug/L
 - Post-Remediation mean [TCE] 15 to 72 ug/L & max [TCE] 440 ug/L (3 events over 29 weeks)
 - Post-remediation source zone concentrations lower than down-gradient plume concentrations
- 99.8% of remediation target/objective achieved (remaining 0.2% due to vinyl chloride exceedance of low level target)
- Improvements noted in down-gradient plume in the range of 90% (i.e. 10,000 ug/L to <1,000 ug/L)
- No rebound or increasing trends identified after 2 years (Sept 2011 to Oct 2013)
- No complaints from neighbours (noise, traffic, smell, air)

Lessons Learned:

- Approximately 50% of chlorinated solvent mass removed between 30 and 60 days from the start of remediation.
- Approximately 80% of chlorinated solvent mass removed before halfway mark at about 94 days, but the remaining 20% required an additional 101 days.
- Communicate the migration and potential effects of heated groundwater to stakeholders early in the process.
- No rebound in total molar mass of chlorinated solvents, BUT need to account for the potential post-remediation TCE transformation/degradation to daughter products with lower remediation targets such as vinyl chloride. AND this observation maybe delayed by over 30 days.

Conclusions:

- The thermal (ET-DSP) enhancements to the MPE based remediation was very effective for:
 - Removing source zone DNAPL (in under 100 days).
 - The long term reduction of soil and groundwater concentrations of chlorinated solvents (as monitored over a 2 year period post-remediation)
 - No rebound (but possible transformation/degradation)
- This technology can be implemented quickly in comparison to other *in situ* remediation options with active remediation completed in under 1 year.
- This technology is cost competitive with other technologies on sites with <u>challenging conditions</u> (i.e., hazwaste, flowing sands, dewatering requirements, under buildings, deep impacts)

Acknowledgements

The Peterborough District and Kingston Region MOE

Quantum Murray LP (General Contractor)

QUANTUM
MURRAY

McMillan-McGee Corp.
(Technology Vendor)

McMillan-McGee Corp.

thermal remediation solutions to the power of e...

Presenter Biographies:

Sean Salvatori, P.Geo.

- Hydrogeologist with 20 years' experience specializing in environmental site assessments and hydrogeological studies.
- His experience includes investigations for industrial & commercial facilities, historic landfills and emergency spill response for ground and water contamination.

Tom Grimminck, P.Eng.

- Environmental engineer with over 17 years' experience in contaminated site investigation, remediation and environmental contracting.
- Areas of expertise include project management, environmental engineering, solid waste management, process engineering and environmental contracting.

Thank You

