Phytoremediation of PHC and Salt Impacted Soil -Field Results, Soil Toxicity and New Research Using Soil Amendments to Accelerate Remediation

Bruce Greenberg, X-D Huang, P Mosley, K Gerhardt, X-M Yu S Liddycoat, X Lu, M Hannaberg, B McCallum, G MacNeill, N Kroetsch, M DiNino, N Knezevich, P Gerwing, K Cryer, R Minks and B Poltorak

Come see us at the Earthmaster booth

Overview of Today's Talk

- Overview of the Phytoremediation process
- CCME PHC analytical procedure
- New research on phytoremediation: Tier 2 risk assessment and soil ammendments

Phytoremediation: A Scientifically Proven Solution

Arborist Neal Sturgis

Phytoremediation: Use of plants to remove impacts from soil, water or air

- Volatilization
- Phytodegradation
- Chelation/compartment in leaves

- Translocation: root symplast→ xylem
- Chelation/compartment in roots
- Plant uptake soil → root
- Rhizosphere Processes
- Bioavailability particle → water

Advantages of Phytoremediation

- 1. Soil quality improved.
- 2. Driven by solar energy suitable to most regions and climates
- 3. Cost effective and technically feasible
- 4. Plants provide sufficient biomass for rapid remediation; promote high rhizosphere activity
- 5. Reasonable time frames 2 to 4 years
- 6. Can be used effectively at **remote sites**
- 7. Greenhouse gas storage: 6 tonnes per ha per year
- 8. Effective for remediation of PHC and salt relevant to the energy industry

Development, Proof, and Full Scale Application of PGPR Enhanced Phytoremediation Systems (PEPS)

Over 14 years of research with full-scale field remediations at each stage of development and application > 30 sites, > 15 completed

- PHC: sites in AB, BC, QC, MB, NWT, SK and ON (2004-13)
- 2. Salt: sites in SK, MB, AB and NWT (2007-13)
 Performing full scale remediations for > 8 yrs
 PEPS successful at > 30 sites

Key to Successful Phytoremediation: Aggressive Plant Growth

"You're right, Neal. Beating through the shrubs *is* like we're on safari!"

The key to phytoremediation success

- Transfer of the science from the lab to the field
- Strategies for aggressive plant growth in impacted and poor quality soils at full scale sites

 PEPS Deployment by highly trained scientists
- Monitoring the progress of phytoremediation at each site Following the chemistry
- 3. Continuous improvement of our phytoremediation systems through scientific research

STRATEGIES INC.

Waterloo

PGPR Enhanced Phytoremediation Systems (PEPS) Aggressive plant growth strategies leads to remediation

Physical soil treatment: Seed bed preparation
Phytoremediation: Growth of plants with PGPR
Monitoring and remediation assessment: Environmental chemistry to follow PEPS from start-to-finish

- <u>PGPR</u>: Plant growth promoting rhizobacteria.
- Prevent the synthesis of stress ethylene.
- <u>PGPR</u> are applied to the grass seeds prior to sowing \rightarrow **NOT Bioaugmentation**
- Effect depth of remediation ~ 0.5 m

Interaction of a PGPR Containing ACC Deaminase with a Plant Seed or Root

Naturally occurring, non-pathogenic microbes (usually *Pseudomonads*)

Chosen initially based on ACC Deaminase activity and auxin (IAA) production

We have isolated PGPR from ON, AB, SK and the NWT (native to North America)

Can be isolated from soils anywhere

Plant Tissue

Adapted from Glick et al, 2004

Phytoremediation of Petroleum

Georgina settles on a botanical response.

Track Record of PEPS Deployment at PHC Sites

Examples of Completed Sites

Site	Fraction	Date	Average (mg/kg)	% Remediation	
Dawson 1		Spring 2009	6500	0.10/	
	Light	Fall 2012	574	91%	
	N <i>C</i> 1 ¹	Spring 2009	2500	- 75%	
	Mealum	Fall 2012	624		
D	Light	Spring 2009	6112	970/	
	Light	Fall 2012	771	87%	
Dawson 2	Madium	Spring 2009	631	560/	
	Medium	Fall 2012	275	50%	
	Light	Spring 2009	6648	0.60/	
Downon 2	Light	Fall 2012	246	90%	
Dawson 5	Medium	Spring 2009	2483	07%	
		Fall 2012	321	9/%	
Peace River	Medium	Spring 2007 492		62%	
		Fall 2008 190			
Quebec City	Medium	Spring 2009	517		
		n Fall 2009 270		48%	
Swan Hills	Light	Spring 2009	1700	<u>820/</u>	
		Fall 2011	283	03%	
	Mallin	Spring 2009	2950	57%	
	Medium	Fall 2011	1258	57%	
Stainbach	T : -1-4	Spring 2008	761	4.4.04	
Steinbach	Ligin	Fall 2008	335	44 %	
Hinton 2	Medium	Spring 2007	900	4.40/	
		Fall 2008] 44%	
Edson	Malin	Spring 2007	1500	220/	
	Medium	Fall 2008	1000	33%	
Nota Creek	Light	Spring 2011	549	85%	
	Ligin	Spring 2013 84		0,570	
	Madium	Spring 2011	515	64%	
	wiedlulli	Spring 2013	186		

Ave rate of remediation: 35 % per year

Track Record of PEPS Deployment at PHC Sites

Examples of Sites in Progress

Site	Fraction	action Date Average		% Remediation	
Hinton 1		Spring 2010	1254		
	Light	Fall 2012	318	75%	
		Spring 2008	2850		
	Medium	Fall 2012	2120	26%	
	Light	Spring 2010	3658	550/	
D		Fall 2012	1664	7 33%	
Beaver River		Spring 2010	1335	220/	
	Medium	Fall 2012	912	32%	
	Light	Fall 2011	916	920/	
Dod Forth 1		Fall 2013	163	82%	
Red Earth I	Madiur	Fall 2011	2394	590/	
	wiedium	Fall 2013	1015	38%	
	Light	Fall 2011	752	710/	
Ded Forth 2		Fall 2013	215	/1%	
Red Earth 2	Medium	Fall 2011	1740	260/	
		Fall 2013	111	30%	
	Light	Fall 2011	620	500/	
Ded Forth 2		Fall 2013	309	50%	
Keu Earth 5	Medium	Fall 2011	Fall 2011 1537 10		
		Fall 2013	1391	10%	
	Licht	Fall 2011	159	570/	
Hinton 2	Ligni	Fall 2013	68	37%	
Hinton 3	Madium	Fall 2011	2233	350/	
	Fall 2013		1461	33%	
St. Leon	Light	Spring 2012	41	1.04	
		Fall 2013	42	-1 %0	
	Medium	Spring 2012	2633	37%	
		Fall 2013	1786 32%		
	Licht	Spring 2012	2 132 2		
	Ligin	Fall 2013	95	2070	
	Medium	Spring 2012	1887 2604		
	Medium	Fall 2013	1399	2070	

Site	Fraction	raction Date Average		%	
	Theorem		(mg/kg)	Remediation	
	Light	Spring 2012	197	70%	
	8	Fall 2013 60		1070	
	Medium	Spring 2012	4676	64%	
		Fall 2013	1688		
	Light	Spring 2012	1064	64%	
	8	Fall 2013 388		0.70	
	Madium	Spring 2012 24046		510/	
	Wiedrum	Fall 2013	11719	J 31%	
Oakville	Light	Spring 2012	302	4.4.0/	
		Fall 2013	168	44%	
		Spring 2012	16098	45%	
	Medium	Fall 2013	8843		
	Light	Spring 2012 161		620/	
		Fall 2013	60	03%	
	Medium	Spring 2012	2980	4.4.04	
		Fall 2013	1657	44%	
Edson 3	Light	Fall 2013	310		
		-	-		
	Medium	Fall 2013	646	NI/A	
		-	-	IN/A	
Edson 4	Light	Fall 2013	311		
				IN/A	
	Malling	Fall 2013	298		
	Medium	-	-		
Norman Wells	Light	Spring 2013	208	750/	
	Light	Fall 2013 53		/3%	
	Medium	Spring 2013 366		450/	
		Fall 2013	200	43%	

Average F2 Concentrations for Six Sites in Alberta

Average F2 Remediation for Six Sites in Alberta

F2 Remediation Trend for Six Sites in Alberta

F2 Remediation Statistics for Six Sites in Alberta

Average F3 Concentrations for Six Sites in Alberta

Average F3 Remediation for Six Sites in Alberta

F3 Remediation Trend for Six Sites in Alberta

F3 Remediation Statistics for Six Sites in Alberta

n de Nelsen fillen de Nelsen et de Stellen de Nelse

n der Veleinigen an der Veleinigen der Veleinigen der Veleinigen der Veleinigen an der Veleinigen veleinigen der Veleinigen der

n der Verstellen an der Verstellen der Verstellen an der Verstellen der Verstellen Verster Verstellen der Verstellen an der

n der Verstellen an der Verstellen der Verstellen an der Verstelle verstellen der Verster Verstellen der Verstellen an der Verstellen an der Verstellen der Verstellen der Verstellen an der Verstellen an der Verstellen an der Verstellen an der Verstellen der Verstellen der Verstellen an

had all solar have

Typical mid-season PEPS plant growth relative to indigenous plant growth

Phytoremediation of PHC

(A) Microbial aerobic PHC degradation – rhizosphere supported by plants(B) Microbial oxygenation pathway of PHC to form a fatty acid

Phytoremediation of Salt

"Gardening pride aside, it's still a carrot and belongs outside."

Weyburn, SK - 2: Before PEPS deployment

Soil Impact – Salt (EC_e ~ 10 dS/m)

Weyburn, SK - 2: PEPS deployment – 3 Months

Average Na⁺ and Cl⁻ in leaf tissue = 23 g/kg

Soil Impact – Salt ($EC_e \sim 10 \text{ dS/m}$)

Salt Remediation by PEPS

Parameter	Value
Annual Decrease in EC _e	1 to 2 dS/m
Na ⁺ and Cl ⁻ Uptake into Foliage	29 g/kg dry mass
Na ⁺ : Cl ⁻ Ratio in Plant Foliage (mass basis)	25:75
Na ⁺ and Cl ⁻ Removed from Project Sites in Foliage	150 kg/ha
Change in EC _e Accounted for by Foliar Uptake of Salt	Up to 95%

With Abundant Plant Growth: PEPS results in PHC and Salt Remediation

- At least twice as much plant biomass due to PGPR
 - Root growth to 50 cm below ground level
- Remediation monitored using CCME PHC and salt analytical methods
- 30 to 40% remediation per year with PEPS; Twice as fast as plants without PGPR
- For PHC remediation, rhizosphere microbes consume PHC
 - elevated 10 to 100 fold with the PEPS
- Salt sequestered to foliage
 - Foliage harvested and removed from site
- No shortcuts for successful phytoremediation
 - Plant growth enhanced by meticulous site preparation and use of PGPR
 - Data validation to properly assess remediation at every stage
 - Only proven scientific methodologies used in PEPS

el constitues d'autor les la constitues de la databaix de la constitue de la constitue de la constitue de la c

Patience – Allow time for nature to run its course

Research on the CCME PHC Technique for Assessment of Phytoremediation

"That's the kind of quality thinking we've come to expect from you, Reggie!"

Site Specific Risk Assessment Soil Toxicity Assessment

- CCME Tier 1 generic criteria are the gold standard
- Tier 1 criteria is based mostly on spiked and/or unweathered soils
- CCME allows for Tier 2 risk assessments
- Does soil toxicity change following phytoremediation and do the soils become non-toxic before Tier 1 criteria are met?
- To assess this:
 - How toxic are authentic weathered soils before PEPS?
 - How toxic are authentic weathered soils after PEPS?

Assessment of Soil Toxicity Before Phytoremediation

- F2: 50 to 3,000 mg/kg F3: 200 to 10,000 mg/kg
- All toxicity assays follow Environment Canada (EC) guidelines
- Plant toxicity assays
 - Barley, Red Clover, Alfalfa and Cucumber
 - End Points
 - Seedling emergence
 - Root growth
 - Shoot growth
- Soil invertebrate assays
 - Springtails (Folsomia candida Colembola)
 - End Points
 - Adult Survival
 - Juvenile production

In consultation with Gladys Stephenson and George Dixon

Barley Root and Shoot Growth – Before PEPS

◆Trial 1 ■Trial 2 ▲Trial 3

Colembola Adult Survival Before PEPS

Colembola Juvenile Production Before PEPS

Plant and Colembola Toxicity Following PEPS

- Field Soils were obtained from seven sites
- F2: 10 to 5,200 mg/kg F3: 64 to 4,800 mg/kg
 - BC, ON and AB
 - PGPR enhanced phytoremediation had been preformed on these sites for a varying number of years
 - Selected soils with low, medium, and high PHC impacts
 - Control soils (unimpacted) were collected where possible

Barley Root and Shoot Growth – After PEPS

Toxicity does not correlate well with PHC concentration

Site	Sample	Petroleum Hydrocarbon Concentration (mg/kg)			25 th Percentile
		F2	F3	Total	Field Control ¹
B3	3	170	1,200	1,412	83
	9/11	1,000	3,300	4,385	76
	6	240	4,050	4,430	89
A1	3	80	580	709	85
	4/5	3,500	3,200	6,810	48
	8	5,200	4,800	10,120	63
H1	25	150	1,200	1,392	78
	33	340	2,600	3,024	83
	15	610	2,900	3,598	83
P1		47	1,000	1,347	88
B1	19	730	2,100	2,930	66
	12	1,300	2,400	3,770	69
C1	СРН	19	1,300	1,849	103
	CPL	32	1,600	2,152	102
B7	11	10	64	84	83
	3	37	370	431	97
	7	170	1,200	1,442	92

¹ Field Control was the average of A1-3, H1-25, P1, C1, B7-11 and B7-3 – Areas with PHC less than 150 mg/kg

Only samples with high F2 show toxicity after PEPS treatment

Toxicity to Colembola After PEPS – Low F2

Toxicity to Colembola After PEPS – High F2

Summary of Tier 2 Risk Assessment

- Weathered soil before PEPS treatment had low toxicity that correlated with PHC levels
- Toxicity of PEPS treated soils did not correlate with PHC levels
- After PEPS treatment, toxicity can be observed if F2 is present at high levels
- In most cases, F2 remediates after 1 or 2 years of PEPS treatment
- Tier 2 approach after PEPS Realistic option

Enhanced Phytoremediation

- Increase soil O₂ levels
- Surfactant to enhance PHC bioavailability
- Increase rate of remediation

Enhanced Oxygen Levels

- Provide a source of O₂ to low O₂ soils
- MgO₂ and CaO₂ not very soluble in water
- Allows slow release of O₂
- Increase rate of PHC metabolism

Considerations

- Could raise pH of soil out of the optimal range of 5-8 for bacteria
- Might need to increase the pH buffering capacity by adding phosphate buffers (fertilizer)
- Half life could be too short for long term phytoremediation project

Surfactants

- Lower surface tension between 2 liquids or liquid and a solid
- Allows PHC to become more bioavailable for metabolism
 - SDS
 - Rhamanolipid (biosurfactant)
 - Petroleum sulfonates (commercial products) (do not interfere with CCME analyses)

Plant growth with CaO₂ and Surfactant on PHC impacted soil

20 cm

 100 mg CaO₂100 mg CaO₂ 100 mg CaO₂
 100 mg CaO₂

 6.7x10⁻³%
 0.02%
 0.06%
 0.18%

 Surfactant
 Surfactant
 Surfactant
 Surfactant

u de a la de la la de la la de la

Conclusions

- PEPS proven to work at PHC, PAH and/or salt impacted sites.
- Remediation at all sites have been successful; > 30 sites.
- Phytoremediation costs < half the cost of landfilling.
- Liability is reduced, not transferred to a landfill.
- Cost effective at remote sites.
- Enhanced CCME BOC method Only BOC is removed.
- Phytoremediation to Tier 1 standards in most cases.
- Tier 2 approach will work After PEPS brings F3 levels d 2500 mg/kg and F2 < 500 mg/kg no toxicity.
- CaO₂/surfactants do not impact on plant growth.

You're doing it wrong.

Thank you Come see us at the Earthmaster Booth

EARTHMASTER ENVIRONMENTAL STRATEGIES INC.

