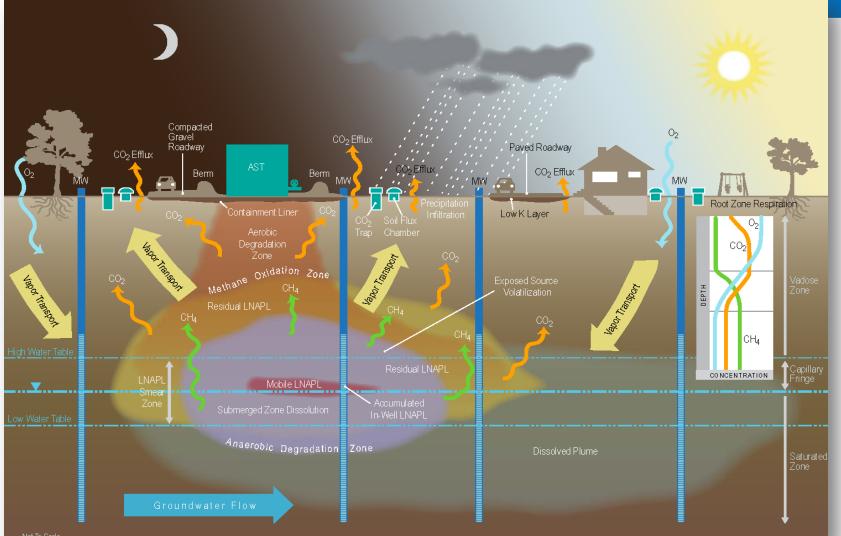
CH2MHILL.

New Methods to Assess and Support Monitoring Natural Source Zone Depletion

Deanne Goodwin, Project Manager Tom Palaia, Principal Technologist

Innovation that Solves Complex Local Challenges, Worldwide

- Introduction to Natural Source Zone Depletion (NSZD) and Carbon Dioxide (CO₂) Efflux
- New NSZD Monitoring Methods
 - Soil flux system (LI-COR, Inc.)
 - CO₂ Traps (E-Flux, LLC)
- Case Study 1 Large Diesel Release, Colorado
- Case Study 2 Natural Gas Well Site, Alberta
- Conclusions



Introduction

Visual Representation of NSZD and CO₂ Efflux

CH2MHILL.

Copyright 2014 by CH2M HILL, Inc.

How has CO₂ efflux traditionally been monitored?

- CO₂ efflux has not been part of the routine of monitored natural attenuation (MNA)
- Typical focus has been on groundwater electron acceptors, redox parameters, microbiological evidence, and contaminant concentrations
- Theoretical analysis (P.Johnson, ASU, 2009) and LNAPL stability efforts (T.Sale, CSU, 2012) indicate that more degradation is occurring than conventional mass budgeting techniques are accounting for

- Current practice does not account for all natural losses and is significantly under-estimating them
- CO₂ measurement at ground surface can be a very cost-effective alternative to groundwater monitoring

How does CO₂ efflux apply to my remedial efforts?

- Can be used at remediation sites to:
 - Delineate subsurface NAPL footprint
 - Monitor natural attenuation processes and estimate contaminant destruction rates
 - Better understand source zone longevity
 - Benchmark remedies and establish endpoints

- CO₂ efflux can be directly measured at ground surface using:
 - Flux Chamber Method (LI-COR, Inc.)
 - CO₂ Trap Method (E-Flux, LLC)
- CO₂ is created by both petroleum- (deep) and ecosystemrelated (shallow) decomposition sources
 - Requires quantitative separation technique to isolate NAPL-related loss rates
 - Techniques are available to "correct" the total measured CO₂ efflux values

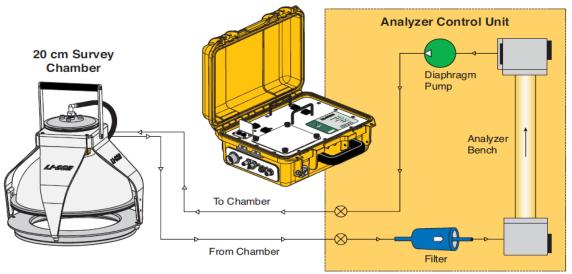
 CO₂ efflux varies with temperature (seasonal), wind, and spatially due to changes in ground cover (i.e., grass, gravel)

CO₂ efflux monitoring requires a carefully designed and technically sound approach to accurately estimate annual NAPL loss rates across large diverse areas

Industry Acceptance for NSZD and CO₂ Efflux

- Advocates include:
 - ITRC 2009 guidance published to assess NSZD
 - British Columbia (U.Mayer and N.Sihota) and Arizona (P.Johnson and P.Lundegard) continue to publish peerreviewed literature in support of the methods
 - Colorado State (T.Sale and J.Zimbron) commercialized the CO₂ Trap technology (E-Flux, LLC)
 - Various site owners and consultants are pushing acceptance
 - 11 abstracts submitted on NSZD to Battelle 2014 conference
- Provinces/States with known applications
 - Yukon, Alberta, Colorado, Illinois, Wyoming, Missouri, Hawaii, Minnesota, and Michigan

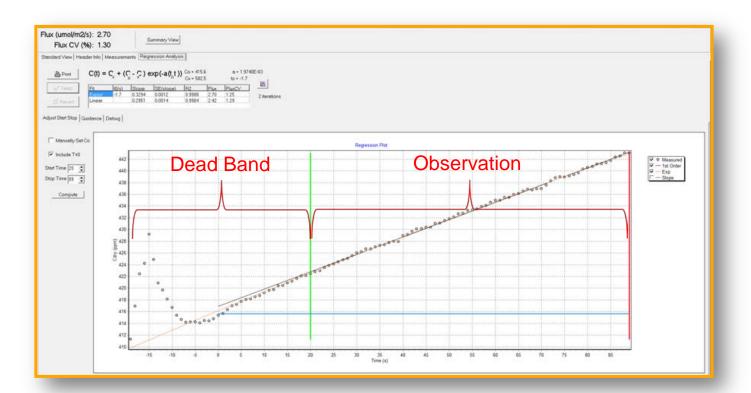
New NSZD Monitoring Methods



Soil Flux System (LI-COR, Inc.)

NSZD CO_2 Flux = Total CO_2 Flux - Background CO_2 Flux

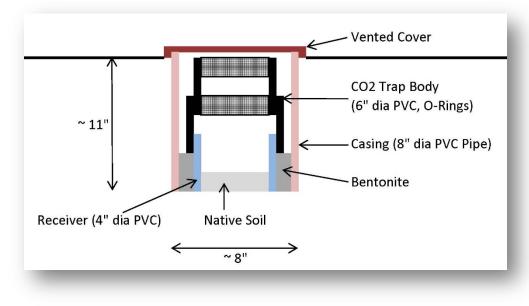
- Theory
 - Total CO₂ flux measured over the NAPL footprint
 - Background CO₂ flux measured outside the NAPL footprint
 - Instantaneous measure


- Equipment
 - Collar (thick-walled 8" diameter PVC with a beveled edge)
 - Vented bellows-controlled flux chamber
 - Analyzer control unit (including infrared gas analyzer and pump)
 - Application software

Copyright 2014 by CH2M HILL, Inc.

Soil Flux System - Data Analysis

- Real-time data collection and analysis
 - CO₂ concentration measured in return air over preset time period
 - Efflux = slope of CO_2 concentration versus time



CO₂ Trap (E-Flux, LLC)

Theory

- Flow-through sorbent trap method
- Time-averaged CO₂ flux

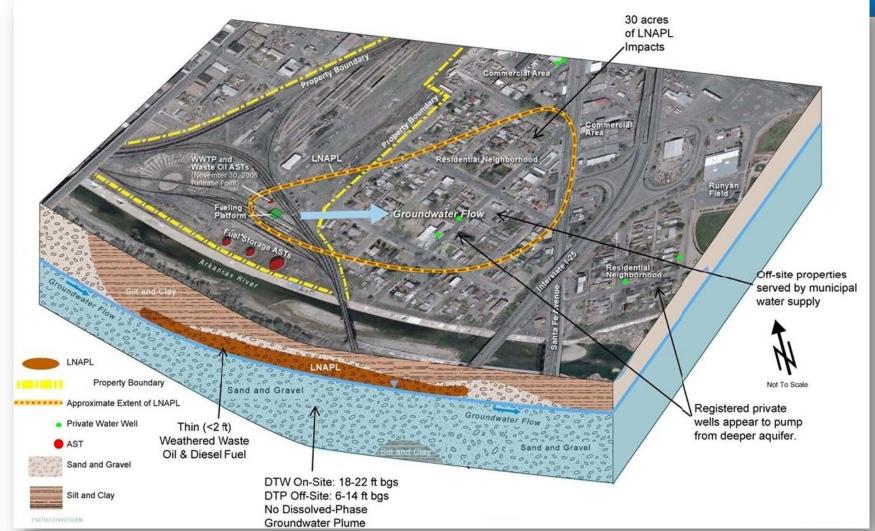
Equipment

- Receiver pipe
- CO₂ Trap with dual sorbent pucks
 - Vented protective cover

CO₂ Trap – Data Analysis

Raw Data:

- Step 1: Measure sorbed CO₂ by acidifying sorbent and measuring the volume of evolved CO₂ gas
- Step 2: Subtract CO₂ due to travel and background
- Step 3: Divide the mass of CO₂ by the cross-sectional area of the column and the period of time the trap was deployed to calculate CO₂ efflux
- Step 4: Convert CO₂ efflux to hydrocarbon loss by selecting appropriate stoichiometric ratio between CO₂ and LNAPL petroleum hydrocarbons
 - $2 C_6 H_6 + 15 O_2 \rightarrow 12 CO_2 + 6 H_2 O$ (benzene example)



Case Study 1: Large Diesel Release, Colorado

Conceptual Site Model Large Diesel Release, Colorado

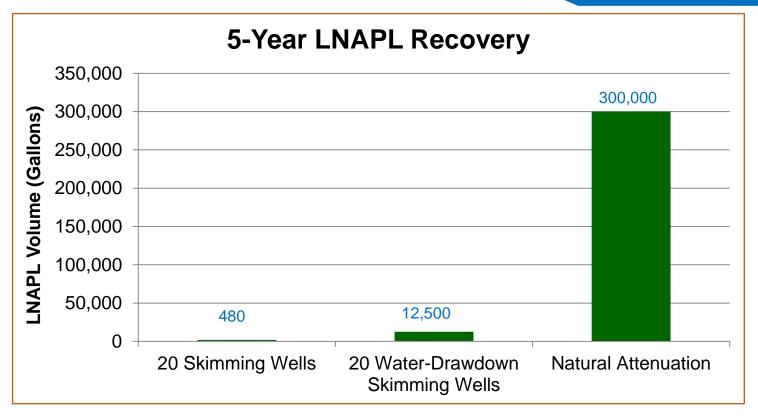
CH2MHILL.

Copyright 2014 by CH2M HILL, Inc.

Corrected CO₂ Efflux and Loss Rate Estimates

CO ₂ Trap	Travel Adjusted Total CO₂ Mass (g)	CO₂ Efflux (µmol/m²/sec)	Background Adjusted CO ₂ Efflux (µmol/m²/sec)	Background Adjusted LNAPL Loss Rate (g/m2/d)	
BACKGROUND TRAPS					
PUEB-CO2-04	1.4	2.4			
PUEB-CO2-10	1.1	1.9			
LNAPL LOCATIONS TRAPS					
PUEB-CO2-01	2.5	4.2	2.1	472	
PUEB-CO2-02	2.0	3.4	1.2	273	
PUEB-CO2-03	3.6	6.2	4.0	917	
PUEB-CO2-05	5.0	8.5	6.3	1,444	
PUEB-CO2-06	3.4	5.8	3.7	842	
PUEB-CO2-07	4.0	6.8	4.6	1058	
PUEB-CO2-08	4.2	7.2	5.1	1160	
PUEB-CO2-09	0.4	*	*	*	

Summary of NAPL Loss Rates Large Diesel Release, Colorado



- Average corrected NSZD rate: 766 g/m²/d
- Extrapolated over the entire 30 acre LNAPL body: 219,000 kg/yr

WP# 614 CO2.03 2,500 MW-18 Cuthener Cut

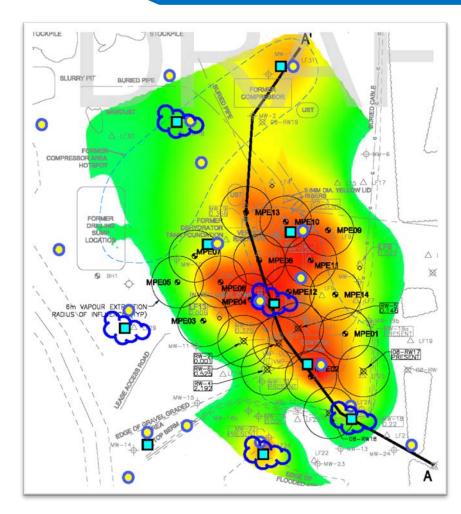
Conclusions and Ultimate Data Use

- Used CO₂ Trap data in conjunction with in-well LNAPL flux data from dye tracer testing to demonstrate LNAPL plume stability
- MNA selected as the sole remedy

Case Study 2: Natural Gas Well Site, Alberta

Site Conditions Natural Gas Well Site, Alberta

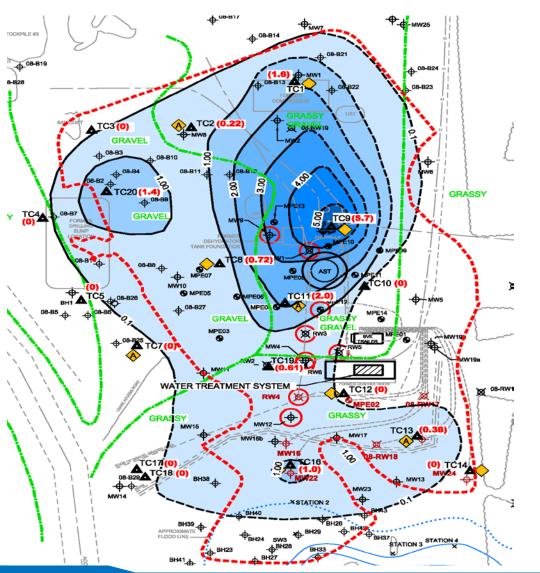
- Natural gas well and compressor station installed on gravel pad in 1996 within a forested and marshy area
- Releases of natural gas liquids/condensate (C6-16) and drilling fluids (C16-50)
- Areas of granular fill underlain by medium-grained sand and interbedded clay and organic materials
- Laser-induced fluorescence survey
 - LNAPL delineated over 1.2 acre
- Focused active remedy over 0.4 acre and natural attenuation for fringe



Project Objectives and CO₂ Survey Scope

- Compare natural losses to active removal using multiphase extraction
- Field Program
 - 20 locations LI-COR 20cm chamber
 - 10 locations E-Flux 10cm CO₂ traps

- MPE system shut down for several days prior to start of CO₂ survey for re-equilibration of subsurface
- LI-COR collars set ~5-8cm depth with hand tools


E-Flux CO₂ Traps set ~18cm depth

- Decent correlation between LI-COR and E-Flux in grassy areas with loose ground surface soil
- Poor correlation between LI-COR and E-Flux in gravelly areas with dense ground surface soil
 - Factor of installation depth deeper ground surface penetration of Traps broke through semi-confining gravel-hard pan and opened a chimney for CO₂ escape that was not "naturally" occurring

Results – What did that mean? Natural Gas Well Site, Alberta

- Segregate data sets into grassy and gravelly areas
- CO₂ efflux:
 - Low in MPE areas
 - Highest in LNAPL core outside MPE influence
- NAPL loss rates up to 5.7 g/m²/d

- LI-COR measurements used in gravel and E-Flux ¹⁴C corrected results used in grassy areas
- Geospatially-weighted average mass loss rate estimated to be 1,900 kg/year across LNAPL footprint
- Establishes a good basis for an endpoint to MPE operation
- Follow-on efforts to ascertain long-term monitoring protocol and better refine estimates of NSZD

Conclusions

Approximate Deployment Costs (Alberta example)

- LI-COR soil flux system
 - Rental ~\$1,700/month
 - 20 beveled 8" PVC collars ~\$300
 - Five site visits over 2 weeks (1 hr drive time each way, 8 hrs onsite/visit, 2 field technicians, \$75/hr) – install collars and perform four rounds of daily measurements
 - \$9,500 (\$500/location)
- E-Flux CO₂ traps
 - Supply and CO₂ and ¹⁴C analysis of 10 traps ~\$18,000
 - Two site visits, start and end of 2 week deployment period (install and retrieve/ship traps, 1 hr drive time each way, 4 hrs onsite, 1 field technician)
 - \$18,900 (\$1,900/location)

Role of CO₂ Monitoring at Your Site

- CSM development
 - Estimate amount of NSZD currently occurring
 - Delineate LNAPL footprint
- Line of evidence
 - Use estimate to compare NSZD to active treatment remedies (e.g., Colorado example)
 - Evaluate the value of active remediation
 - Credible active remedy showing substantive NSZD is at work
 - active remedy is in place with minimal remediation costs
- Compare efficacy of remedial actions
 - Compare pre- and post-site conditions to evaluate efficacy of installed remedies (e.g., biosparging)

Applicability of CO₂ Efflux Monitoring

- Most suitable for petroleum sites with:
 - Identified NAPL within unconsolidated geology
 - Predominantly pervious ground cover and effective atmospheric exchange
 - Planned or existing MNA remedy component
 - Active remedies approaching/at asymptotic recovery limit
 - Enhanced bioremediation remedies looking for cost-effective monitoring technology
- Useful to projects in all stages of remediation from initial characterization to remedy optimization

CO₂ Efflux Monitoring Method Comparison

Method	Advantages	Disadvantages
Soil Flux System (LI-COR)	 Less susceptible to soil cover density Quick measurements – can do more of them Real-time data 	 Snap shot in time only - need for repeat measurements Measurement variability and need for background correction
CO ₂ Trap Method (E-Flux)	 Time averaged CO₂ flux Less labor intensive Ability to use ¹⁴C radio isotope to correct for background Simpler math to get results 	 More affected by soil cover density Analytical cost

- CO₂ efflux monitoring technologies offer a less invasive and less labor intensive alternative to traditional methods
- More accurately account natural losses, improve understanding, and provide a more technical sound benchmark for remedy evaluation

- These methods provide data to more accurately quantify NSZD and are gaining ground toward regulatory acceptance
- Technology selection and the field program require careful consideration of data objectives, logistics, site conditions, and ultimate data use

These CO₂ efflux methods are a significant improvement in source zone monitoring. Their technical-defensibility, application ease, and costeffectiveness could lead to replacing traditional methods and gaining a broad industry acceptance as a best practice.

CH2MHILL.

Questions?

Copyright 2014 by CH2M HILL, Inc.

Innovation that Solves Complex Local Challenges, Worldwide

Thank You For Your Time

Deanne Goodwin Phone: (403) 407-6132 Email: <u>Deanne.Goodwin@ch2m.com</u>

Tom Palaia Phone: (303) 679-2510 Email: <u>Tom.Palaia@ch2m.com</u>

References

- E-Flux, LLC. 2013. Standard Operating Procedure 'CO₂ Trap Deployment and Replacement Protocol'. February 1, 2013.
- Interstate Technology and Regulatory Council (ITRC), 2009. Evaluating Natural Source Zone Depletion at Sites with LNAPL. April.
- LI-COR Biosciences, 2005. LI-8100 Automated Soil CO₂ Flux System Instruction Manual. Lincoln, NE. <u>http://licor.com/env/products/soil_flux/</u>.
- Lundegard, P.D. and P.C. Johnson, 2006. Source Zone Natural Attenuation at Petroleum Hydrocarbon Spill Sites – II: Application to a Former Oil Field. Ground Water Monitoring and Remediation, 26, no. 4, Fall, pages 93-106.
- McCoy, K.M., 2012. Thesis Resolving Natural Losses of LNAPL Using CO₂ Traps. Submitted in partial fulfillment of the requirements for the Degree of Master of Science. Fall.
- Sihota, N.J., O. Singurindy, and K.U. Mayer, 2011. CO₂-Efflux Measurements for Evaluating Source Zone Natural Attenuation Rates in a Petroleum Hydrocarbon Contaminated Aquifer. Environmental Science & Technology, Vol. 45, No. 2, pages 482-488.
- Sihota, N.J. and K.U.Mayer, 2012. Characterizing Vadose Zone Hydrocarbon Biodegradation Using Carbon Dioxide, Effluxes, Isotopes, and Reactive Transport Modeling. Vadose Zone Journal.

CH2MHILL.

Copyright 2014 by CH2M HILL, Inc.