

Subsoil Salinity Tool Application on Abandoned Well Sites in Southern Alberta: Industry and Consulting Perspectives, Challenges, and Solutions

Mark Grant, B.S.A., P. Ag. and K. Eric Van Gaalen, M.Sc., P. Ag.

October 16, 2014

Outline

- Remediation before the Subsoil Salinity Tool (SST)
- The SST Cenovus learnings
- Results, challenges, solutions

Site history

Six salt impacted sites in SE Alberta

- Drilled: 1969 1980
- Depth: 723 1245 m
- Target: gas
- Soils with elevated sodium and chloride
 - exceedance of Alberta Tier 1 (AESRD, 2010) for EC and SAR

Remediation before the SST

Remediation guidelines for EC and SAR:

- Alberta Tier 1 (AESRD, 2010)
- Background

What about chloride?

- 250 mg/kg?
- 500 mg/kg?
- 1000 mg/kg?
- Doesn't matter?

Example Site – 'Capone'

Phase 2 ESAs identified salinity issues

Remediation targeted EC, SAR and chlorides <250 mg/kg

EC and SAR were naturally elevated in background soils

Example site 'Capone'

Example site 'Capone'

Example site 'Capone'

SST – Cenovus Perspective

Undertook SST analysis on six sites

• Tier 2a, Tier 2b and Tier 2c

Thought remediation was over

Example site 'Gotti'

Preliminary chloride guideline of 190 mg/kg

SST – Cenovus Perspective

Left with some questions:

- Was such a low guideline required to be protective of receptors?
- How did the remediation requirements from SST compare to Alberta Tier 1 (AESRD, 2010)?
- Can you use Alberta Tier 1 (AESRD, 2010) for soils with elevated chlorides?

Findings

- Cost/Benefit
- Three challenges

Results

Table 1: Estimated Volumes and Remediation Costs at Five Sites

Exceeding Tier 1 Guidelines*	Exceeding 250 mg/kg* Chloride	Exceeding SST Guidelines**
21,700	24,662	14,214
\$2,389,387	\$2,715,533	\$1,565,588
	Exceeding Tier 1 Guidelines* 21,700 \$2,389,387	Exceeding Tier 1 Guidelines*Exceeding 250 mg/kg* Chloride21,70024,662\$2,389,387\$2,715,533

*root zone plus subsoil estimates

**includes root zone soil exceeding Tier 1 guidelines and subsoil exceeding SST guidelines

Results

Table 2: Estimated Savings Using	g SST Guidelines at Five Sites
---	--------------------------------

	Relative to Tier 1	Relative to 250 mg/kg
Soil not landfilled (m ³):	7,486	10,448
Saved worker hours:	3,267	4,560
Saved truck loads:	363	506
Remediation cost savings:	\$824,283	\$1,150,429
Cost of SST data collection and analysis:	\$184,128	\$184,128
Net Cost Savings:	\$640,155	\$966,301

And just as protective to the environment

Challenge 1: When to use SST?

- Justifications/rationale
- Tier 1 versus Tier 2 (SST or other methods)
- Optional versus mandatory scenarios
- Cost savings?
- Mock scenarios / gap analysis
- Avoiding over or under remediating
- Higher certainty with endpoint ~ more defensible closure ~ simplified liability management?

Challenge 2: Stringent SST Guidelines?

Table 3: Tier 2 Chloride Guidelines							
Site	Initial SST Output*	Refined Guideline	Limiting Pathway / Receptor	Example Peripheral Subarea Guideline	Shallow Groundwater Guideline		
Moran	370	1,030	Root zone	1,000	-		
Luciano	1,400	1,600	Root zone	2,100	6,000		
Costello	400	1,160	Aquatic Life	1,100	-		
Gambino	170	700	Aquatic Life	700	1,700		
Gotti	190	1,080	Aquatic Life	670	1,000		

*Prior to implementing techniques described in this presentation

Guidelines are approximate, expressed in mg/kg for subsoil and mg/L for groundwater

Guideline Interpolation

Aquatic Life Guideline Relative to Depth of Impact

SST Soil Chloride Guideline Interpolation

- relative to distance to nearest surface water body: for source length (SL) and top of impact (TOI) categories

Challenge 2: Stringent SST Guidelines?

Solonetzic soils interspersed with chernozemic soils

Challenge 2: Stringent SST Guidelines?

- Solonetzic soils interspersed with chernozemic soils = bimodal EC
 - Outlier analysis of bimodal data may overlook natural salinity on the landscape? (Solution: three iterations)
 Practical to stratify a spatially heterogenous area?
 - Reasonable to use backfill soil with low EC?
 - Provide causal reasoning

Challenge 3: Applying Subarea Guidelines

- Refine lateral closure and avoid over remediating the edges
- Prescriptive: extract worst case soils and conserve peripheral salvageable soil – balance volumes

Impact area divided into subareas, each with a customized guideline

ORANGE G.L.: 1,500 mg/kg TOI: 3 metres BOI: 7 metres

BLUE G.L.: 1,000 mg/kg TOI: 1.5 metres BOI: 6 metres

Remediation Plan

Prescriptive

Test pits (blue squares) and confirmatory samples supplement and confirm predicted trends

Summary

- SST was useful on several sites
- Remediation was required
- Net cost savings
- Stringent guidelines: pathway elimination, pre- and postprocessing work to avoid over-remediating
- Subarea application: soil conserved by removing worst case and maximizing salvage
- Higher certainty of remedial endpoints, protecting receptors (liability management / closure) – avoid under-remediating

References

- AENV (Alberta Environment). (2001b, May). Salt Contamination Assessment & Remediation Guidelines (Publication No. T/606, ISBN 0-7785-1718-7). Edmonton, AB: Environmental Sciences Division Environmental Service.
- AENV (Alberta Environment). (2011). Subsoil Salinity Tool software v.2.5.2. Alberta Environment Air, Land, and Waste Policy Branch, Edmonton, AB.
- ESRD (Alberta Environment and Sustainable Resource Development). (2014a). Subsoil Salinity Tool software v.2.5.3. Alberta Environment Air, Land, and Waste Policy Branch, Edmonton, AB.
- ESRD (Alberta Environment and Sustainable Resource Development). (2014b, May 21). Alberta Tier 2 Soil and Groundwater Remediation Guidelines (ISBN 978-1-4601-1702-6). Edmonton, AB: Land and Forestry Policy Branch, Policy Division.
- ESRD (Alberta Environment and Sustainable Resource Development). (2014c, May 23).
 Alberta Tier 1 Soil and Groundwater Remediation Guidelines (ISBN 978-1-4601-1700-2).
 Edmonton, AB: Land and Forestry Policy Branch, Policy Division.
- Alberta Agriculture and Rural Development. (1993). Management of Solonetzic Soils. Edmonton, AB: Soil and Crop Management Branch. Retrieved from the world wide web Sept 21, 2014. http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex166