CH2MHILL®

Incorporating Sustainability into Site Closure – A Field Example

Leanne Murdie Austrins

Outline

- Defining Sustainability and Sustainability Goals
- Phased Remediation Planning Model
- Sustainable Soil Management
 - Insitu
 - Exsitu
- Sustainable Water Management
 - Surface Water Management
 - Groundwater Management
- Results against Goals
- Final Site Condition

Sustainability Goals

A remedy or a combination of remedies whose net benefit on human health and the environment is maximized through the judicious use of limited resources

Key elements for Remediation:

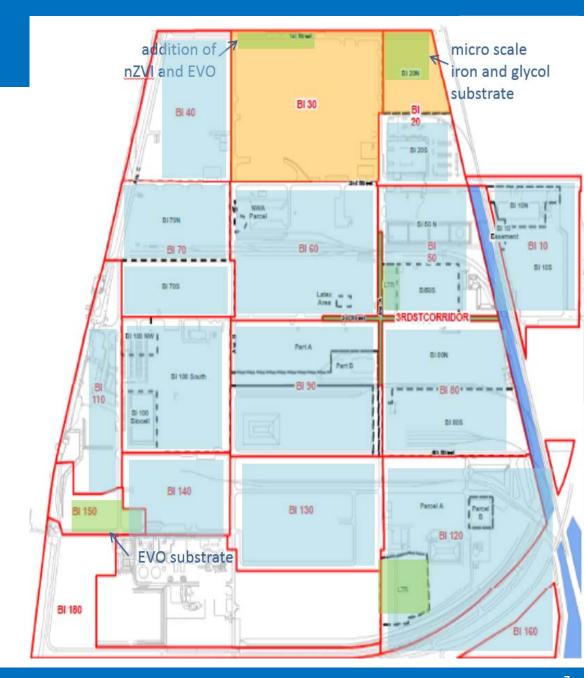
- Energy Intensity Reduction
- Community Acceptance;
- Environmental Protection

Site Overview

- Chemical production plant in operation for over 70 years was closed
- Site complicated by age of contamination, native glacial clay till with fractures, and permeable utility corridors
- 322 acres of property prepared for property transfer through a combination of *insitu* and *exsitu* remediation and legal negotiations
- Volatile Organics Compounds present in the subsurface for over 60 years in some locations.

Remedy Selection Process

- Flow Chart Developed for Decision Making
 - CVOC Contaminated Soil to be Remediated:
 - DNAPL, >TCLP criteria, or posing risk to surface water
 - Treat in Soil Treatment Area (STA)
 - CVOCs > TCLP
 - Treat In Situ with Fracture and Injection
 - Volume too large to treat in STA (>10,000 cys)
 - Soil cannot be excavated (below building, below piping)
 - Longer timeframe available



Sustainable Soil Management

Where *Insitu*and Exsitu

Remediation
were Applied

Design of ExSitu Remedial Strategy

- Premise Soil is not a waste
- Reach target concentrations in 5 7 years
- Must be cost effective based on volume of soil to be treated (60,000 cubic yards)
- Selected amendment must be able to treat near saturation CVOC soil concentrations to <TCLP criteria
 - ex 1,2 DCA from 20 mg/kg to 500 mg/kg (0.5 mg/l TCLP, 20x rule = 10 mg/kg)
- Anaerobic Reductive Dechlorination in Soil Treatment Area (STA)
- Mix Ratio: 3 Soil/ 0.5 manure/ 0.5 wood chips
- Mixing machinery must be able to adequately mix low permeability clay soils and the treatment amendments

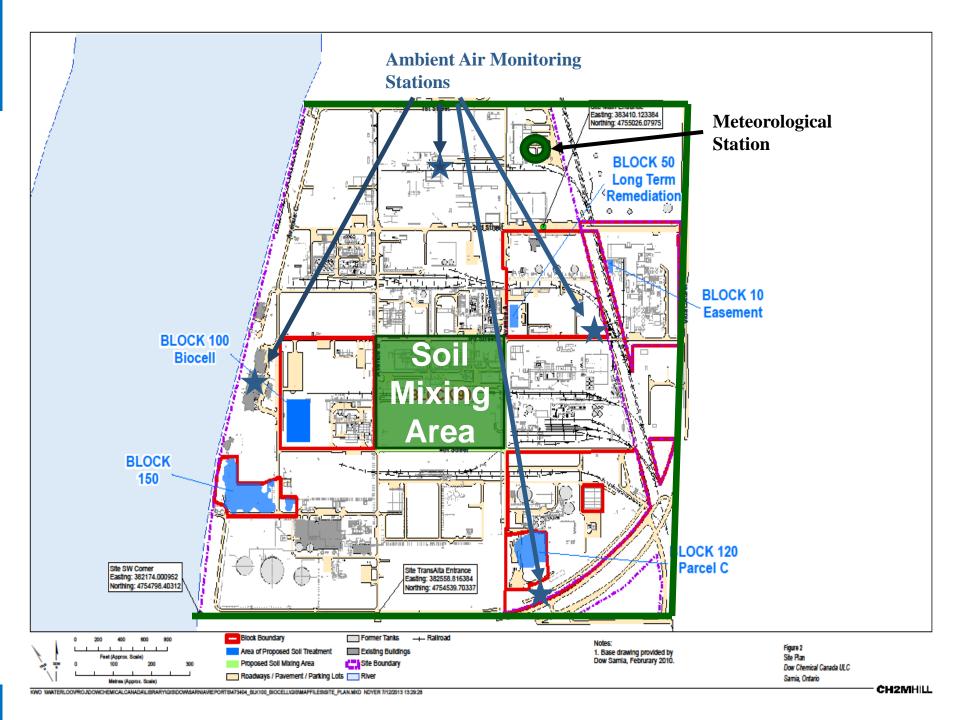
Exsitu Remediation – STA

Exsitu Remediation – STA

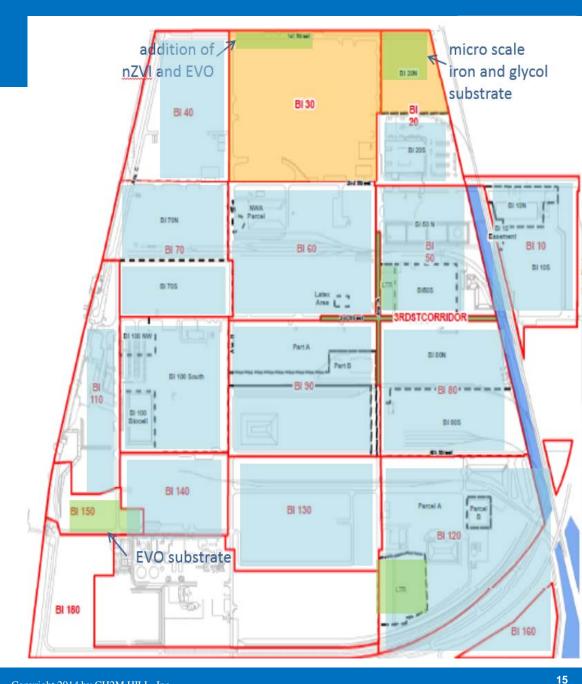
Exsitu Remediation

- Total treated: 60,000m3
- Treatment area footprint: 4.7 ac
- Operating time period: 145 days
- Daily production average: 410 yards per day
- \$350/yard treatment cost if disposed as hazardous waste
- \$95/yard total treatment cost in STA
- Treated soils can be used as backfill material onsite

SOIL WAS NOT A WASTE


Then and Now

Soil Mixing Process

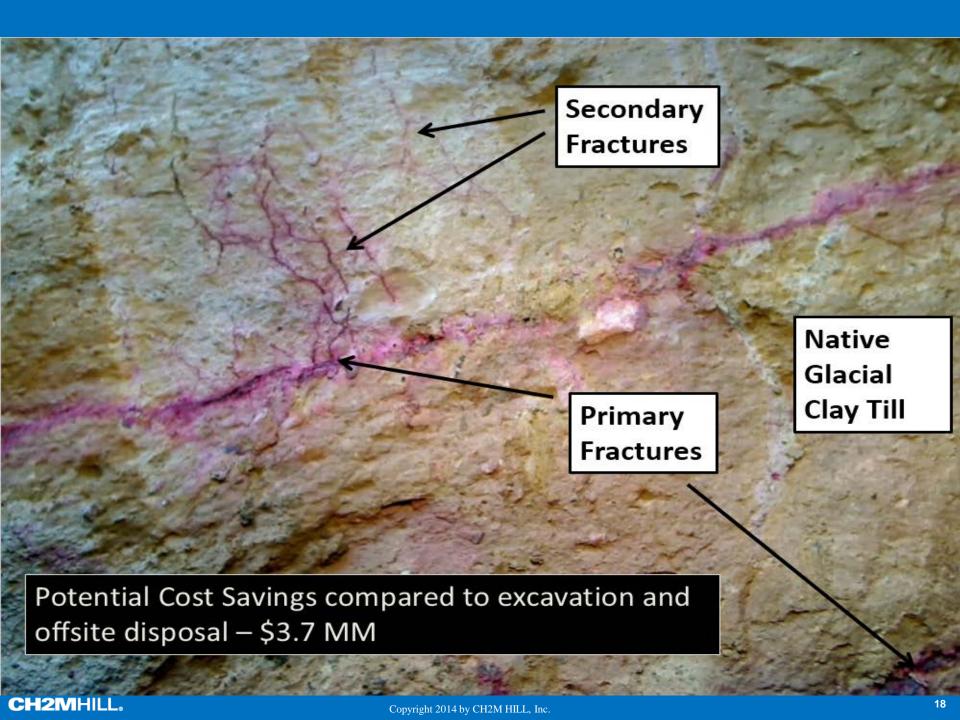


On Site Areas where Insitu and Exsitu Remediation were Applied

Design of *InSitu* Remedial Strategy

- Premise SOIL IS NOT A WASTE
- Reach target concentrations in 5 7 years
- Must be cost effective based on volume of soil to be treated (in excess of 110,000 m3)
- Selected amendment must be able to treat near saturation CVOC soil concentrations to <TCLP criteria
 - ex 1,2 DCA from 20 mg/kg to 500 mg/kg (0.5 mg/l TCLP, 20x rule = 10 mg/kg)

Hydraulic Fracture & Injection



- Iron and organic carbon successfully added to the subsurface.
- Amendment detected throughout a 20 to 30 foot radius from the injection point and secondary fractures visible up to 12 inches vertically from the primary fractures.
- Long term success throughout the vertical treatment zone is still in question.

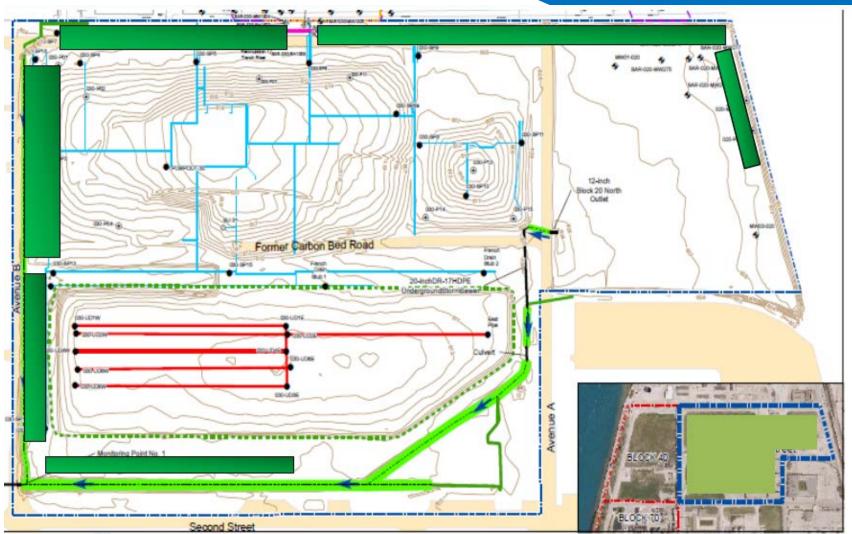
Insitu Remediation

- Total treated: 20,000m3
- Application Period: 14 days
- \$350/yard treatment cost if disposed as hazardous waste
- \$45/yard total treatment cost for insitu
- Success of treatment may be seeing rebounding after 6 years post application, clay matrix diffusion extremely slow

SOIL WAS NOT A WASTE however, treatment is not complete

Sustainable Water Management

Groundwater Management – Design of Passive Hydraulic Control


- Premise- no operational features remaining.
- Need to control water levels in a French Drain system that was previously controlled by pumping and onsite carbon treatment.
- Reduce flow from 20 gpm to 1 gpm.
- Infiltration reduction necessary.

Tree Plantation Design

Challenges/Lessons Learned

- Trees require 5 years or more to reach maturity
- Tree mortality
- Finding all infiltration sources
- Precipitation during dormancy periods
- Aeration tubes allowed infiltration
- Interim water management

Surface Water Management

- Site contoured to promote surface runoff to a single discharge point.
- Site vegetated to utilize surface water and reduce TSS.
- Negotiated regulatory discharge to provincial water body after sampling to confirm clean surface water.

July 15, 2010 TSS = 1,400 mg/L

October 19, 2011

TSS = 75 mg/L

October 19, 2012

TSS = 25 mg/L

Water Management

- Regulatory permission granted for direct discharge to the provincial water body.
- Management of dormancy periods being controlled by further reduction of infiltration and installation of passive permeable reactive beds in areas of seeps.
- Goal to allow water table to be at static with no additional pumping.

Sustainability - How Did We Do?

Energy Intensity Reduction;

- Achieved massive reduction in carbon footprint due to negotiations and remedial strategy.
- Negotiated extended timeframes for insituremediation.
- Exsitu remediation occurred onsite, reducing transportation costs.
- No mechanized treatment remains onsite.
- Trees provide passive pumping to control groundwater gradient.
- Reduced GAC usage formerly 70,000 to 80,000 lbs of carbon per year and costs for transportation to regeneration facility.

Sustainability - How Did We Do?

Community Acceptance;

- Achieved aggressive community education and community support
- Development of recreational property

Sustainability - How Did We Do?

Environmental Protection;

- Achieved land is fully available for industrial reuse
- No offsite migration potential remains

Field Site

After

Before

Acknowledgements

CH2M HILL Team:

Phil Smith
Catherine Creber
Krista Aitchison
Chris Peace
Steve Scandlen
Rich Block
Jeremy Meyer

Dow Chemical Canada Inc. Team:

Joanne West Dave Wandor

Questions/ Comments?

