

Biodegradation of organic compounds in OSPW with microbial communities indigenous to MFT

Miao Yu, Ania Ulrich, Tong Yu Department of Civil and Environmental Engineering

Highlights

Objective: Evaluate the effectiveness of using indigenous microorganisms in degrading organic compounds in oil sands process-affected water (OSPW)

Experimental Methods: Bench-scale bioreactors

Results and Conclusions:

- With bioreactors, mature fine tailings (MFT) and MFTextracted biofilms demonstrated the ability of degrading organic compounds in the OSPW. In addition, MFTextracted biofilms could eliminate interference caused by MFT, allowing easier process monitoring and operation.
- A process of cultivating and recolonizing indigenous microorganisms on carriers to treat tailings water was developed.

Biodegradation and Biological Treatment

Process is cost-effective

Microorganisms are readily available

Aquatic toxicity could be reduced

Experimental Methods

Experimental Methods – Cont.

Bench-scale bioreactors (i.e. bottles ③)

Surface area: 500 m²/m³

Water Quality

			OSPW	OSPW after	River
Parameter	Units	OSPW	supplemented with acetic acid	advanced oxidation	(2011)
рН	-	8	6	7	6.5 - 9.0
Alkalinity	mg/L as CaCO ₃	863	-	674	-
Sodium	mg/L	68	-	-	-
Ammonium	mg/L	43	-	-	0.1
Chloride	mg/L	358	358	-	120
Sulfate	mg/L	140	140	390	-
Nitrate	mg/L	ND	ND	ND	13
COD	mg/L	341	564	241	-
NAs	mg/L	38	34	1	_

Summary of COD removal in bioreactors using indigenous microorganisms with MFT

OSPW to MFT ratio (mL OSPW/L MFT)	Initial COD (mg/L)	Residue COD (mg/L)	Removal rate (%)
250	160	157	2
500	299	159	47
1000	564	185	67
3000	564	204	64
7000	564	142	75

Original OSPW COD=341

COD removal in bioreactors using indigenous microorganisms with MFT

Rapid depletion of readily biodegradable organic compounds when substrate is sufficient

Sulfate reducing and denitrification processes

The indigenous microbial community could utilize organic compounds to support different anoxic processes.

"uplifting the whole people

Summary of NAs removal in bioreactors using indigenous microorganisms with MFT

OSPW to MFT ratio	Initial NAs	Residue NAs	Removal rate
(mL OSPW/L MFT)	(mg/L)	(mg/L)	(%)
250	17	23	-37 🥎
500	21	23	-12
1000	19	13	16
3000	25	22	13
7000	27	23	16

Moderate NAs removal when substrate is sufficient

The hypothesis and solution

- Hypothesis: Leaching of NAs in residue bitumen carried by MFT.
- As a consortia of multiple microbial species that adhere to a surface, biofilm attached to carriers could eliminate the MFT while preserving the indigenous microbial communities.
- MFT-extracted biofilms was developed and tested for biodegradation.

COD removal in bioreactors

using MFT-extracted biofilms on carriers

NAs removal in bioreactors

using MFT-extracted biofilms on carriers

- 1. MFT harbors active and diverse microbial communities that could utilize organic compounds in OSPW to support different anaerobic biodegradation processes.
- 2. With the presence of acetic acid, partially removal of OSPW-originated dissolve organic compounds could be achieved indicating potential co-metabolism.
- 3. Using MFT-extracted biofilms could largely eliminated the interference caused by leaching of organic compounds from the MFT.

uplifting the whole people

Water Quality

			OSPW	OSPW after	River
Parameter	Units	OSPW	supplemented with acetic acid	advanced oxidation	(2011)
рН	-	8	6	7	6.5 - 9.0
Alkalinity	mg/L as CaCO ₃	863	-	674	-
Sodium	mg/L	68	-	-	-
Ammonium	mg/L	43	-	-	0.1
Chloride	mg/L	358	358	-	120
Sulfate	mg/L	140	140	390	-
Nitrate	mg/L	ND	ND	ND	13
COD	mg/L	341	564	241	_
NAs	mg/L	38	34	1	

(2) OSPW after advanced oxidation

Summary of COD removal in bioreactors using indigenous microorganisms with MFT

OSPW to MFT ratio	Initial COD	Residue COD	Removal rate
(mL OSPW/L MFT)	(mg/L)	(mg/L)	(%)
250	139	111	20
500	161	123	23
1000	244	148	39
3000	248	145	41
7000	266	137	48

Advanced oxidation treatment promotes the biodegradation of dissolved organic compounds

(2) OSPW after advanced oxidation

COD removal in bioreactors

using indigenous microorganisms with MFT

Frequent fluctuation when substrate is not sufficient, indicating unstable effluent quality

The indigenous microbial community could utilize organic compounds to support different anaerobic processes.

(2) OSPW after advanced oxidation

OSPW to surface area ratio	Initial COD	Residue COD	Removal rate
$(mL OSPW/m^2)$	(mg/L)	(mg/L)	(%)
8000	138	74	46
16000	241	126	48

(3) Acclimatized biofilm – A further confirmation

NAs removal in bioreactors using acclimatized biofilm

Conclusions

- 1. MFT harbors active and diverse microbial communities that could utilized organic compounds in OSPW to support different microbial activities.
- 2. Using MFT in bioreactors to treat OSPW presents difficulties in operations and process monitoring, because the residue NAs in bitumen carried by MFT would interfere with process monitoring
- 3. Indigenous microorganisms can be cultivated and recolonize on carriers to treat tailings water, indicating using biofilm reactor to remove organic compounds from OSPW is feasible.

Acknowledgement

Oil Sands Research and Information Network

Suncor Energy Inc.

Natural Sciences and Engineering Research Council of Canada

(NSERC)

University of Alberta Luis Delgado Chavez Lei Zhu Jela Burkus Lena Dlusskaya

Thank You!

Dr. Tong Yu: tong.yu@ualberta.ca (780) 915-3013 Miao Yu: myu5@ualberta.ca

