Field Application of Passive Treatment of Chlorinated Solvents using Novel Sustained-Release Oxidant Technologies Partner

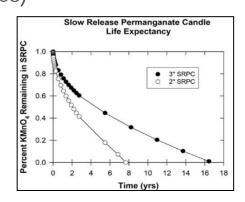
Remtech - October 18, 2013

D. Grant Walsom, B.A.Sc., P.Eng., QP XCG Consultants Ltd.

Pamela J. Dugan, Ph.D, P.G. **Technical Development Manager Carus Corporation**

Outline

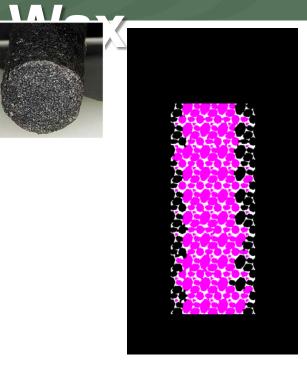
- Technology Development
- History of the Site and the Issue
- Decision Criteria
- Cost Review
- Barrier Design
- Field Installation
- Monitoring Effectiveness
- Summary



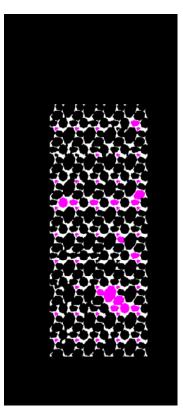
Technology Development – Sustained-Release (SR) Oxidants

• Promising slow-release permanganate and persulfate modeling, lab, pilot-scale field studies (e.g., Ohio State University, Clemson, University of Nebraska, Colorado School of Mines)

A Constraint of the second sec



- Variety of reactive materials are possible
 - Oxidants, bio-amendments, oxygen release compounds, activators, chelating agents


Oxidant Release from

- Newly created void spaces expose permanganate solids for dissolution and diffusion
- Process occurs radially from the exterior of the cylinder to the inner core

- This is why we see an initial spike of permanganate in early time...
- And a significantly slower and lower release of permanganate at later times

Technology Development – SR Oxidants

 Sustained-release permanganate is a KMnO₄-based product dispersed in a solid paraffin wax matrix (~80% w/w) RemOx[®] SR ISCO Reagent

 Sustained-release persulfate is a NaS2O₈-based product dispersed in a solid paraffin wax matrix (~80% w/w)

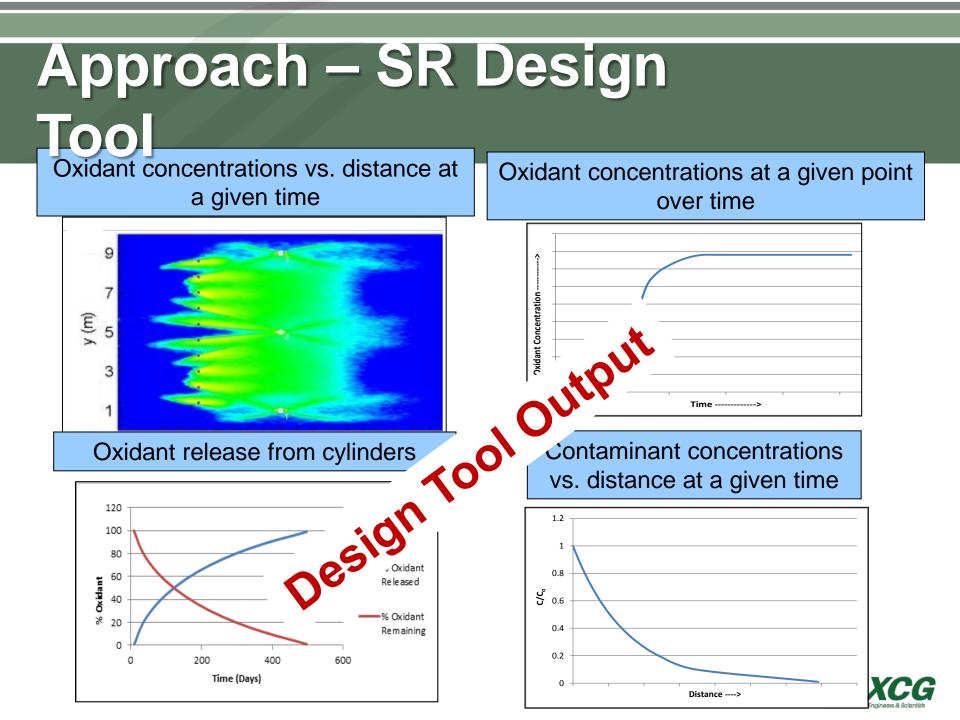
SR Technology - Versatility in Form

- Solid product formed as <u>cylinder</u>, <u>chipped</u> for trench/barrier applications, or <u>small pellets/pastilles</u> for hydro-fracturing into low permeability media:
 - 1.35 or 2.5 inch diameter
 - 18 inches long
 - DPT emplacement, well installation, hydro-fracturing

SR Technology – Versatility in Application Current Emplacement Methods:

- Direct push technology
- Holders in existing wells
 - Hydro-fracturing being investigated

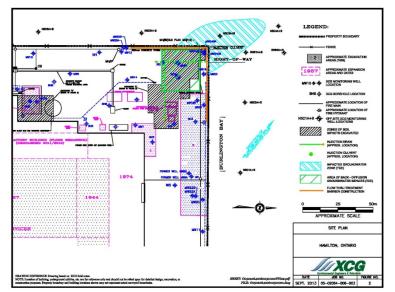
Approach – SR Design Tool


Basic project information

Factors affecting oxidant release rate and resulting concentration

Contaminant characteristics Dispersion parameters Oxidant demand – rate and extent Flow properties

Simulation time and distance of interest


History of the Site and the Issue

- Historical Industrial Site in Hamilton, Ontario
- Developed circa 1925
- Close to the Harbour
- Geology is fill over silty-clay down to clay material
- Historical use of chlorinated solvents:
 − PCE, TCE → c-DCE and VC in groundwater
- Difficult Remediation Complicated Ownership

History of the Site and the Issue

- Off-site Groundwater Impacts ...
 - Higher concentrations
 - Near saturation levels

- Remediation Stages ... excavation of soil impacts
- Back-Diffusion of impacted groundwater following excavation and hydraulic re-equilibration

History of the Site and the Issue

- Off-site Owner non-co-operative
- Edge of property, high-volume storm sewers
- Client needs to move on ...

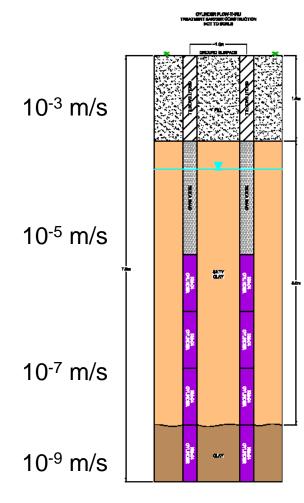
How to cost-efficiently
 and technically sound prevent back-diffusion

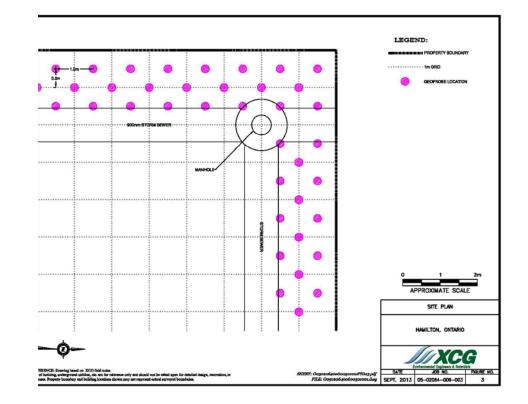
Decision Criteria

- Ease of Application Difficult location/situation
- Known Technology want to be sure it works
- Low Operation & Maintenance
- Overall Cost
- Remtech 2012 ... RemOx SR Presentation

Cost Review

- Cost Analyses Total of \$163,500:
 - Cylinders (per cylinder \$250) = \$120,000
 - Direct Push Installation & Locates = \$23,500
 - Engineering/Consulting/Oversight = \$12,500
 - Monitoring and Analytical = \$7,500


- Other barriers cost minimum of \$500,000 (in 2002)
 - ZVI, funnel and gate, barrier with pump/treat



- First Site Application in Canada
- December 2012 use budget before end of year
- Installed 476 cylinders in 119 boreholes over 8 days
- Straight-forward installation health and safety

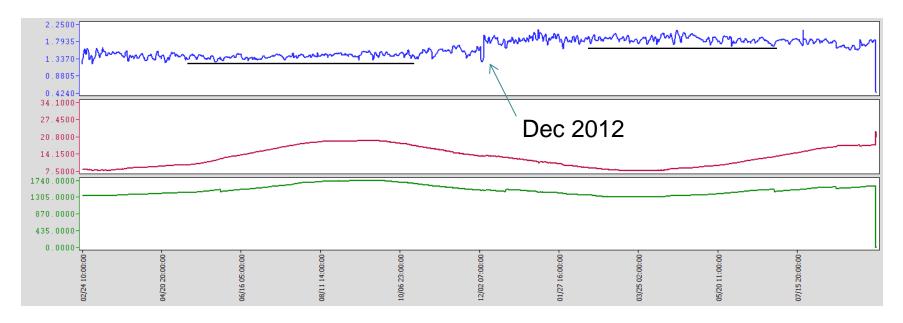

Barrier Design

Barrier Design

- Two Drills supplied by Strata Soil
- Along Corner of property
- Close proximity of neighbouring plant

- Direct-Push
- Cylinder installed through drill rods
- Easy installation

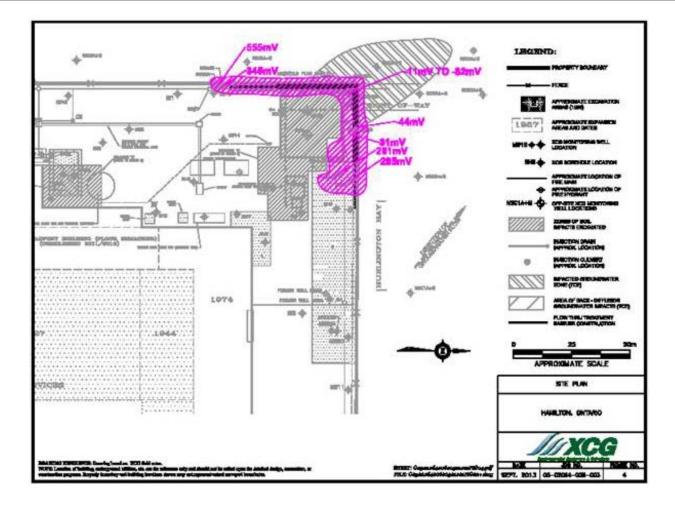
• Installed ... now what?


• Client needs assurance that effective

• Monitoring indicators in groundwater – electrical conductivity

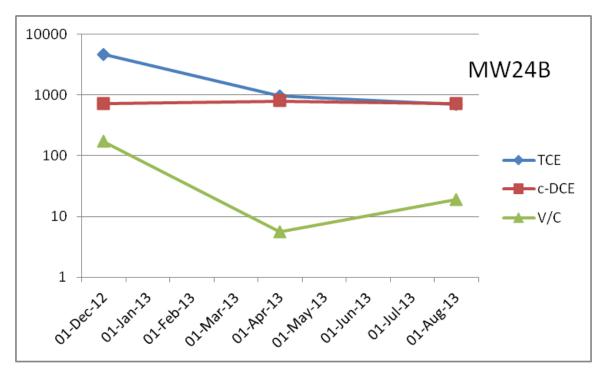
• Eventual concentration decrease

 Location MW20B – observed an almost immediate increase in electrical conductivity (distance ~ 1.5m)


- Down-gradient showing increases in electrical conductivity with time (pre vs. post installation):
 - Location NSC5A (avg. of 0.32 up to 4.44 mS/cm)
 - Location NSC5B (avg. of 0.87 up to 2.21 mS/cm)
 - Location NSC3A (avg. of 1.94 up to 3.11 mS/cm)
 - Location ROW1B (avg. of 3.34 up to 4.53 mS/cm)
 - Within the area of the Barrier increases of 18 54% since 2005
- Recall hydraulic conductivity ... 10⁻⁵ m/s to 10⁻⁹ m/s
 - velocity from 93 m/yr (fill) down to 0.015 m/yr (clay)

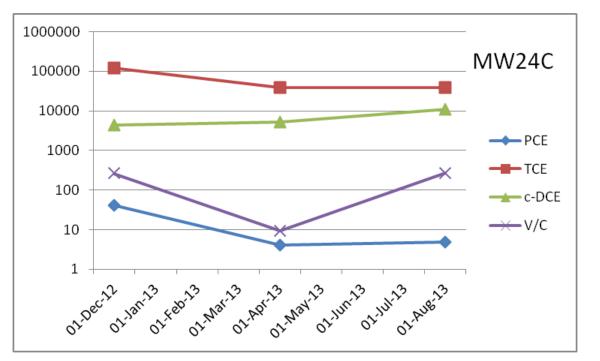
- Is conductivity enough of an indicator?
 - Monitored ORP as well.
- Stronger indicators together ...
 - Know that Positive ORP values > 100 mV indicate favorable oxidizing conditions.
 - Negative ORP values indicate reducing conditions.
- We have created a zone of favourable ORP conditions (positive ORP or approaching).

	Location	ORP	
upgradient	MW7R MW8R MW14R	-133 -32 -154	
barrier treatment zone	MW12R MW13 MW20A MW20B MW21	261 -51 555 345 285	
barrier trea	MW23 MW19 MW24AR MW24BR MW24CR	-44 31 -82 -11 -49	olume Core
downgradient	NSC3A NSC3B NSC4A NSC4B NSC5A ROW1B	-104 -102 164 187 105 -117	PIL



- Indicators aside ... We have oxidizing conditions and decreasing VOCs concentrations.
- Impacts of TCE ... c-DCE and vinyl chloride:
 - MW24B
 - MW24C
- At these locations we also have:
 - Slight increases in electrical conductivity observed
 - ORP values rising indicating Oxidation Zone

MW24B installed at 5.5 metres below ground surface, located within 1.0 metre of the barrier


MW24B	06-Dec-12	15-Apr-13	12-Aug-13
c-DCE	710	790	720
PCE	0	0	0
TCE	4600	950	700
V/C	170	5.6	19

MW24C installed at 8 metres below ground surface, located within 1.0 metre of the barrier

MW24C	06-Dec-12	15-Apr-13	12-Aug-13
c-DCE	4400	5100	11000
PCE	41	4	4.9
TCE	120000	39000	38000
V/C	260	9.2	270

Summary ... SUCCESS!

- New twist on a known technology KMnO₄
 - First Canadian Application
- Application ease for this difficult location/situation:
 - Sewers, property boundaries
 - Low hydraulic conductivities and velocity
- Early Indications of success:
 - − ↑ Electrical conductivity
 - Creating a favourable ORP zone

Summary ... SUCCESS!

- Oxidation occurring in nearby wells:
 - Close proximity low groundwater velocity
- Client is pleased with Cost/Benefit:
 - Much lower cost than others ... \$ to treatment vs. construction
- Technology has fit well with overall remediation plan and exit strategy:
 - Remediation to meet RA targets ... move to RSC

Closing

• Questions?

• Thank you for Attending!

D. Grant Walsom, B.A.Sc., P.Eng., QP Partner XCG Consultants Ltd. www.xcg.com Pamela J. Dugan, Ph.D, P.G. Technical Development Manager Carus Corporation www.caruscorporation.com

