Column Tests to Assess Flushing of Perchlorate from Soil

Cindy G. Schreier, Ph.D.

Jane (Deni) Chambers, Mark Gage

Outline

- Site Background / Objectives
- Soil/Water Preparation / Characterization
- Column Construction / Procedures
- Results
- Summary / Conclusions

Site Background

- Industrial facility near Las Vegas, Nevada
- Perchlorate present in vadose zone and GW

- Depth to GW 10-30 ft bgs
- Soil flushing considered because
 - perchlorate will move into groundwater
 - GW pump and treat system already exists

Perchlorate Basics

- Anionic: CIO₄⁻
- Solubility in water: ~ 200 g/L
- Common uses: explosives, pyrotechnics, rocket fuel

- Health effects: can interfere
 with thyroid function
- Drinking water limits: 18 μg/L (NV Interim Action Level)

Objectives

Conduct column tests to:

- Determine amount of perchlorate that can be leached from soil
- Determine volume of water required to leach perchlorate
- Identify other compounds that may also be flushed from soil

Soil Preparation

- 3 samples, each about 200 lbs (90 kg)
- For each sample
 - Sieve to remove rocks
 > 0.5 in (1.25 cm)
 - Homogenize
 - Analyze for various parameters including perchlorate, arsenic, metals, Cr(VI), TOC

Site Water

- Stabilized Lake Mead Water (~25 gal/90L)
- Received in multiple containers
- Used as received
- Analyzed for perchlorate, arsenic, Cr(VI) and other parameters

Baseline Analytical Results

Analyte	Units	Soil 1	Soil 2	Soil 3	Water
Perchlorate	ppb	6,180	145,000	3,130,000	2.19
Alkalinity	ppm	n.a.	n.a.	n.a.	160
Arsenic	ppm	7.2	2.8	3.6	< 0.005
Cr(VI)	ppm	< 0.400	< 0.400	< 0.400	< 0.001
Moisture	%	4.7	8.3	8.3	n.a.
TDS	ppm	n.a.	n.a.	n.a.	620
ТОС	ppm	5,900	5,000	7,600	2.8

- ppb = micrograms per kilogram or micrograms per liter
- ppm = milligrams per kilogram or milligrams per liter
- n.a. = not applicable

Physical Parameters BULK Soil

Column Construction

- Column design based on ASTM D 4874
- Clear PVC pipe
- 6 in diameter x 72 in tall
- 1 in thick acrylic endplates
- Top diffuser sintered glass
- Bottom diffuser SS, pore size 75 μm
 PRIMA
- Soil added in 6 in lifts

End Plate

11

Column Bolted to Endplate

The First Lift

Construction Complete

Column Parameters

Parameter	Soil -1	Soil-2	Soil-3		
Diameter		6 in (15 cm)			
Bed Height	72 in (190 cm)				
Soil Mass	135 lbs (61 kg)				
Bulk Density	1.87 g/cm3				
Pore Volume, L	10.4	11.5	11.5		
Flowrate, mL/min	1-2	2.1	2.0		
Pore Volumes Put Through	2.3	2.1	2.1		
Pore Volumes Recovered	1.6	1.2	1.6		
Duration, days*	12	7.8	8.3		

Procedures

- Site water pumped into top of columns
- Wetting front noted
- Effluent collected for 24 hr periods
- Effluent analyzed for various parameters
- After final time point, columns sampled and soil analyzed for CIO₄⁻

PROCEDURES

Sample Bottles

17

PROCEDURES

Sampling Soil at End of Test

Column Flushing RESULTS

Wetting Front Progression

Pore Volumes Applied v. Collected

Perchlorate in Leachate

Perchlorate in Leachate

Perchlorate Balance

Perchlorate	Soil 1	Soil 2	Soil 3
Initial Mass in Column, g	0.38	8.88	193
Final Mass in Column, g	< 0.0013	0.00981	0.14
Mass Leached, g	0.126	5.5	208
% Removed from Soil	> 99.7	99.9	99.9
% Accounted for in Leachate	33	62	110

Arsenic in Leachate

Cr(VI) in Leachate

Summary & Conclusions

- Soil flushing effectively removed perchlorate
 - Application of 2 pore volumes removed > 99% of initial perchlorate
 - Most perchlorate leached was detected after application of 0.9-1.2 pore volumes
- Flushing also leached arsenic and Cr(VI)

Recommendations

- Full-scale application should be effective but
 - Must consider water availability
 - Must consider effect of high perchlorate, arsenic, Cr(VI) and other parameters on existing pump and treat system

Questions?

Cindy G. Schreier, Ph.D. 916-939-7300

cschreier@primaenvironmental.c om

Deni Chambers, Mark Gage

510-839-0688

deni@ngem.com mark.gage@ngem.com

