Dutch Point Wetland Restoration Initiative

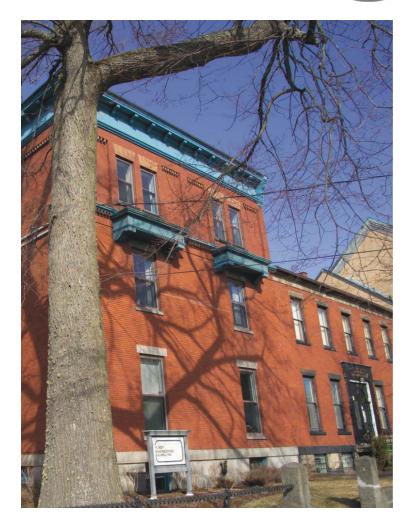
Remediation Technologies Symposium 2013, Banff, Alberta

October 16 - 18, 2013

FUNDY Engineering

Serving Our Clients' Needs First

Presentation Overview


- Introduction to Fundy Engineering
- Introduction to Canaport[™] LNG_{LP}
- Overview of Wetlands Impacted
- NBDENV Wetland Policy
- Dutch Point Historical Site Description
- Wetland Restoration Engineering
- Wetland Restoration Construction
- Post-Construction Photographs and Results

Introduction to Fundy Engineering

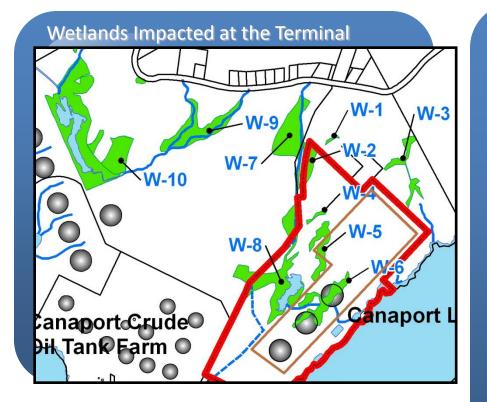
- Full-service, multi-disciplinary engineering consulting company
- Incorporated in 1989
- Offices in Saint John, NB; Charlottetown, PEI; and Halifax, NS
- Employs over 35 professional engineers, scientists, technical and support personnel
- Completed greater than 10,000 projects
- <u>Strategic Partnership with Summit</u> <u>Liability Solutions</u>

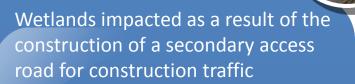
CanaportTM LNG_{LP}

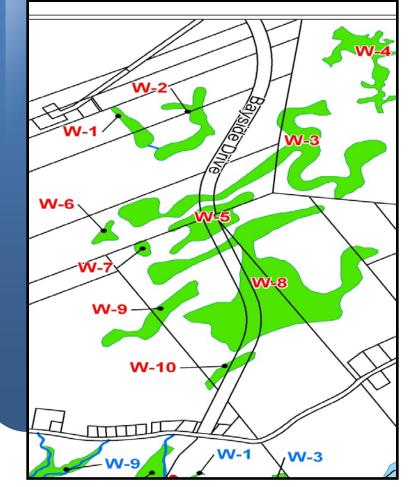
Canaport[™] LNG_{LP} is a state-of-the-art receiving and regasification Terminal in Saint John, NB

Maximum send out of 28 million cubic meters of Natural Gas a day

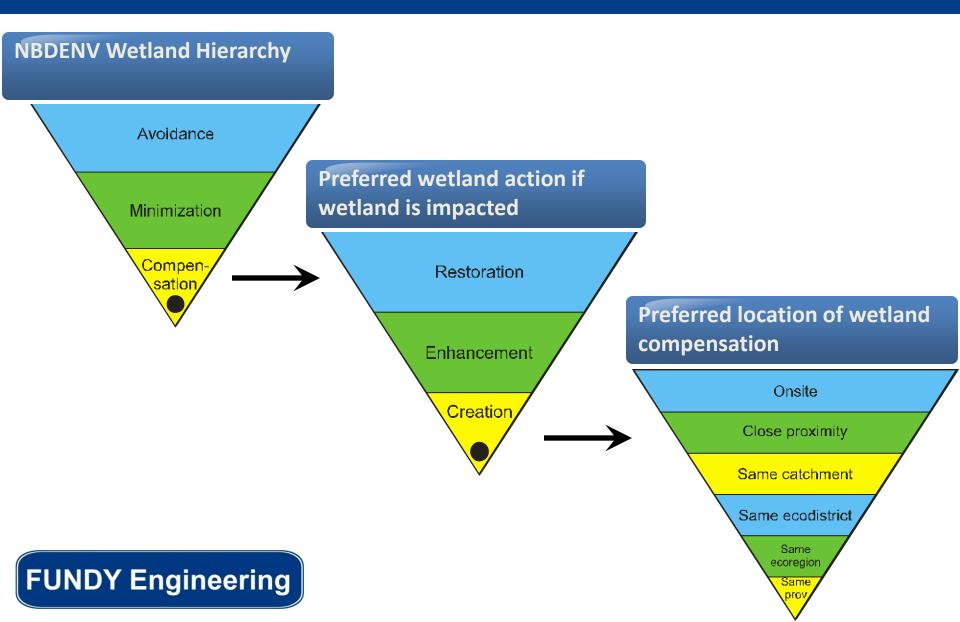
Able to supply 20% of natural gas needs in northeast US and Canada's needs


Several wetlands were impacted during construction, which CLNG were committed to compensate for





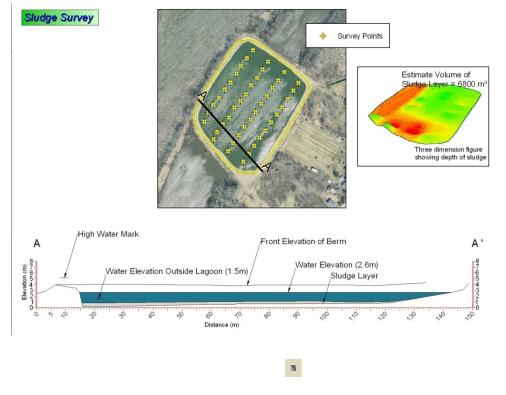
Wetlands Impacted

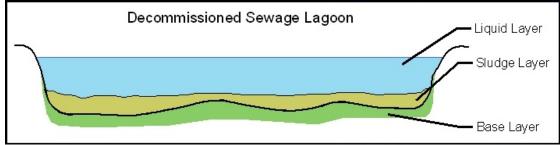


Total Compensation Required:

New Brunswick Department of the Environment Wetland Policy

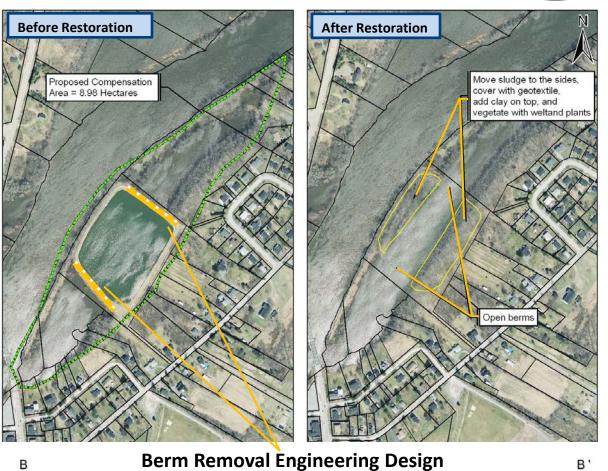
Historical Site Description

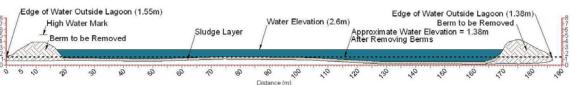



< 1970's backwater area (bogan) in Hampton
Sewage treatment lagoon built in the mid 70's
Sewage lagoon decommissioned in 2008
Site impacts included sludge, metals, hydrocarbons, berm walls, fencing, etc

Baseline Environmental Assessment

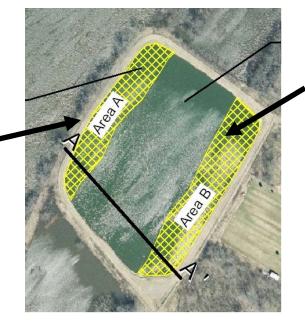
- Sludge thickness of 0.3 to 1.5 m
- Hydrocarbon "Hot Spot"
- Arsenic, lead, copper
- Grain size analysis of underlying soil material (fine grained)
- Risk-based tools used to determine the receptor pathways
- On-site encapsulation modeled, and deemed acceptable risk




Wetland Restoration Engineering

8.98 ha of habitat, including fragmented and fish habitat, was restored.

Potential environmental threats were cautiously delineated, stabilized and risk-managed.


Water and soil quality have improved considerably according to ongoing environmental sampling.

Wetland Restoration Construction

- Dewater lagoon
- Sludge within lagoon to be relocated to Areas A & B
- Encapsulate sludge
- Re-grade area and hydro seed
- Remove northern & southern berm wall

Approximately 4000 m³ of sludge to be relocated to Areas A & B

3 Restoration Phases

Phase I: Lagoon Dewatering & Sedimentation Stabilization

Phase II: Berm Grading & Cutting

Phase III: Hydro seeding & Native Plant Re-vegetation

HAMPTON It's our wature!

Site Photographs after Restoration 1 YR

The former Dutch Point Wastewater Treatment Lagoon now naturally blends in to the surrounding landscape since the restoration initiative that was completed.

Site Photographs after Restoration 3YR

Wetland Vegetation Re-establishing

Comparison of Sample Results Post Decommissioning vs. Post Rehabilitation (1 YR)

WATER

	Parameter	Criteria (µg/L)	Post Decommissioning (µg/L)	Post Rehabilitation (µg/L)
	Cadmium	0.017	0.3	↓ ND
	Copper	2 to 4	7	🕽 ND
	Lead	1 to 7	8.4] 1.4
0	Zinc	30	33	↓ 5
SOIL				
	Parameter	Criteria (mg/kg)	Post Decommissioning Max Value (mg/kg)	Post Rehabilitation Range (mg/kg)
			Decommissioning	Rehabilitation
	Parameter	(mg/kg)	Decommissioning Max Value (mg/kg)	Rehabilitation Range (mg/kg)
	Parameter *Arsenic	(mg/kg) 6	Decommissioning Max Value (mg/kg) 10	Rehabilitation Range (mg/kg)
	Parameter *Arsenic Copper	(mg/kg) 6 35.7	Decommissioning Max Value (mg/kg) 10 190	RehabilitationRange (mg/kg)I5 to 16I7 to 32

*Arsenic is also present in background soils

In Summary

- Impacted site was remediated and transformed into 8.98 ha of wetland (\$32K/ha)
- Water quality, soil quality and habitat have significantly improved to date (after 1 year)
- Further monitoring required (*i.e.*, 3 and 5 year) to measure full benefit of remediation & restoration

