

Remedial Methods for Mitigating Vapour Intrusion to High Density Urban Developments

By: Peter T. Reid, M.Eng., P.Eng., CSAP, MBA, Practice Leader Presented to: RemTech 2013

October 18th, 2013

L HEMMERA

Agenda

- Vapour intrusion is a relatively new area of science.
- The investigation design, assessment of results, and remedial measures are changing.
- The following examines:
 - Regulatory Environment
 - Practical Example

Regulatory Environment & Research

British Columbia Regulations

Society of Contaminated Sites Approved Professionals

of British Columbia

- BC MOE Technical Guidance 4 (2010)
 - What to investigate and how to interpret the data.
 - Allows for other guidance from other sources

• CSAP Soil Vapour Advice (2009)

 Address practical issues of what to test for, shallow samples, and non traditional foundations

British Columbia Research

Science Advisory Board

 Guidance on Site Characterization for Evaluation of Soil Vapour Intrusion into Buildings (2011)

- High Density Residential Soil and Vapour Quality Standards
 - Attenuation Factor for Parking Garages (Still under Review)

US EPA (2013 – Draft for Discussion)

- List of volatile chemicals
- Remedial Options
 - Pressurization
 - Passive barriers
 - Venting Layers
 - Parking Garages used as a highly ventilated, low-occupancy area at ground level (parking garage)

US EPA (2011 – Background Air)

Compound	95 th Percentile	Standard	Compound	95 th Percentile	Standard
Benzene	9.9-29 (14)	1.5	Methylene chloride	2.9-45 (130)	20
Carbon Tetrachloride	<rl-1.1< td=""><td>0.65</td><td>PCE</td><td>4.1-9.5</td><td>600</td></rl-1.1<>	0.65	PCE	4.1-9.5	600
Chloroform	4.1-7.5	1	Toluene	79-144 (6)	5000
Dichloroethane, 1,1-	<rl< td=""><td>500</td><td>Freon 113</td><td><rl-3.4< td=""><td>30000</td></rl-3.4<></td></rl<>	500	Freon 113	<rl-3.4< td=""><td>30000</td></rl-3.4<>	30000
Dichloroethane, 1,2-	<rl-0.2< td=""><td>0.4</td><td>Trichloroethane, 1,1,1-</td><td>3.4-28</td><td>2000</td></rl-0.2<>	0.4	Trichloroethane, 1,1,1-	3.4-28	2000
1,1-DCE	0.7	1	TCE	0.56-3.3 (0.6)	0.5
Cis 1,2-DCE	<rl-1.2< td=""><td>20</td><td>Vinyl chloride</td><td><rl-0.09< td=""><td>1</td></rl-0.09<></td></rl-1.2<>	20	Vinyl chloride	<rl-0.09< td=""><td>1</td></rl-0.09<>	1
Ethylbenzene	12-17 (320)	1000	Xylene, m/p-	21-63.5 (60*)	100*
MTBE	71-72	3000	Xylene, o-	12-20 (60*)	100*

All vales are yg/m^3 and for residential areas. RL = reporting limit * total xylenes (bracketed values) Vancouver Area measured background sites

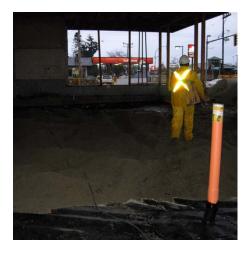
ITRC (2007)

- Conceptual Site Model
 - Where can contaminants come from and how enter
- Remedial Systems Pros/Cons
 - Passive, pressurization, depressurization
- Seasonal Variation (soil vapour)
 - If soil gas is a factor of 10 below risk based screening levels, seasonal sampling is not required

California EPA – Vapor Intrusion (2011)

- Eleven Step Approach to Assessing Vapours
 - Consider Existing Building and Future Building
 - For future buildings need o look at what will be adjacent the building and not what soil and groundwater is there now.
 - What will create vapours in future
 - Lateral wells rather than vertical

Other Sources of Information



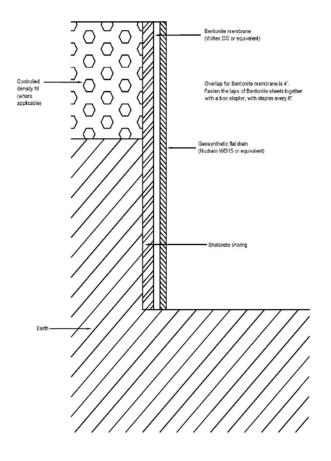
Health Canada 2010

- Model soil/groundwater to vapour
- Washington Department of Ecology (2009)
- Oregon State (2010)
- ASTM (2008)
 - Investigation and Remediation

Practical Example High Rise Vancouver

Traditional Vapour Barrier

Service Station Upgrade


- Interior service station renovation.
- Extensive contamination under footings and exterior.
- Protect indoor workers
- Geomembrane barrier

Barrier Wall

- Service Station Property Redevelopment
 - Potential for vapours migrating on-site from off-site groundwater contamination under the road.
 - Road contamination being remediated in-situ.
 - Needed barrier to allow redevelopment.

Barrier Wall

Barrier design based on a four layers

- Shotcrete Keep soils in place
- Bentonite Barrier
- Drain Preferential pathway for vapours up and out. Also building isolation.
- Concrete for building foundation
- Interior isolated from exterior

Redesign of Parking Garage

Service Station Property Redevelopment

- Vapours migrating on-site from off-site contamination under the road.
- Road contamination being remediated in-situ.
- Biggest concern is vapours from groundwater

Redesign of Parking Garage

Redesigned Parking Garage

- Lowered drainage pipe
- Dedicated pump to supress groundwater and discharge
- Pump isolated with dedicated vent and gasket. Explosion proof.
- Separate pump for all garage drains and elevator sump

Thank you. Questions?

Peter T. Reid, M.Eng., P.Eng., MBA, CSAP

Hemmera Suite 250-1380 Burrard Street Vancouver, BC V6Z 2H3 jschmidt@hemmera.com

Hemmera.com

1 HEMMERA