Cost-Effective Air Quality Management for Remediation Projects

Jim Slack

Ajeev Mark Ramnauth

Overview

Objective

Program Development

Case Study

Introduction

Goal - To design a case by case technically defensible and costeffective air monitoring program for remediation projects

Criteria - Outline the design and implementation of a perimeter air monitoring program that

- Is protective of public health
- Reduces owner's liability during remediation
- Is technically defensible with a cost-effective approach

Perimeter Monitoring Objectives

- Protect public health and the environment
- Evaluate the need for dust suppression measures
- Document perimeter air quality during remediation activities
- Provide risk management and public confidence
- Reduce owner's potential for liability

Program Design Options

Determine target parameters to be monitored via site investigation reports

Determine action levels	Equipment
 Based on a health/risk-based analysis Based on regulatory acceptance levels 	 Continuous: direct or via surrogate Portable or Fixed Locations Manual (walk around)

- Frequency of monitoring and reporting period
- Number of monitoring locations
- Sophistication of data telemetry/alarm systems

Air Monitoring Action Levels

An integral component of the program design

Purpose:

Site-specific Action Levels will indicate when to initiate dust suppression activities and/or limit or cease intrusive work for the protection of the general public and environment

- Risk-based action levels consistent with Federal and/or Provincial guidelines
- Action Levels based on protecting human health and the environment
- Parameter-specific action levels will assist in the ultimate design of types and sensitivity of monitoring equipment

Developing Parameter-Specific Action Levels

Determine the constituents of interest (COI) at each site through a site survey, soil information, and planned remediation activities

Evaluate potential for exposure

Human receptors in the vicinity

Ecological receptors

Determine exposure pathways

Determine distance of receptors to site

Meteorological /climatological data

nstrumentation

 Instrumentation must comply with accuracy needs dictated by parameter-specific risk-based action levels

Sampling equipment typically used at sites:

Particulates/Metals: Continuous-fixed or portable particulate monitors (TSP/ PM₁₀/ PM_{2.5})

 Used to detect fugitive dust levels as a surrogate for metals and, if applicable, PAHs

Integrated Particulate Samplers (Hi-Volume or Lo-Volume samplers)

- On site analysis using XRF (i.e. lead)
- Off site laboratory analysis

 (i.e. metals: Pb, As, Cr)

Volatile Organic Compounds (VOCs)

- Portable PIDs for total VOCs
- GCs speciate (BTEX compounds)
- Integrated Sampling -TO15

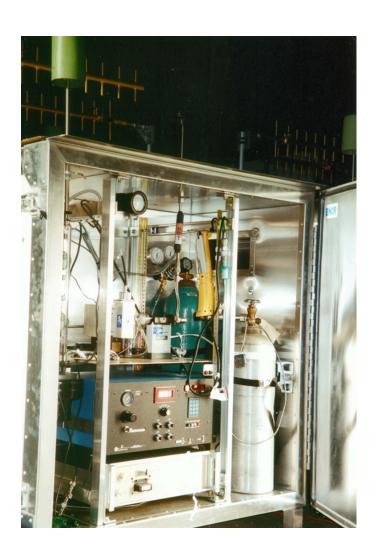
Instrumentation (contd.)



Instrumentation (contd.)

Meteorological data:

- Continuous: wind speed, wind direction, temperature, dew point, rainfall
- Need for real-time data:
 On-site tower vs. airport data



Number and Placement of Monitoring Locations

- Location and number of sites on a case-by-case basis
- Each site should be evaluated for the following:
 - Availability of electrical services
 - Security of site perimeter
 - Extent and length of perimeter boundaries
 - Proximity of remedial activities to local residents and other sensitive receptors (e.g., day care centers, schools, hospitals, housing, businesses, etc.)
 - Predominant wind directions, based on climatological analyses
 - Remedial activity plan (e.g., one location at a time vs. multiple locations at one time)
 - Budgetary considerations

Frequency of Air Sampling

More Intensive Program with Fixed Air Monitoring (FAM) Units

Advantages

- Continuous stream of data/information to base corrective actions on (if needed).
- Large, accurate database to help minimize owner liability associated with remedial activities

Frequency of Air Sampling

More Intensive Program with Fixed Stations

Disadvantages

- May require electric power installation at each fenceline site
- May require environmentally controlled enclosures for instrumentation (speciated VOC parameters)
- Reduces mobility of monitoring sites and may require more sites than other monitoring protocols
- Requires extensive calibration and maintenance
- Higher costs and longer installation period

Frequency of Air Sampling (contd.)

Less Intense Program Approach Using Portable Air Monitoring (PAM) Units

Advantages

- Provides flexibility and ease of mobility to "hot" spots
- Battery operated no electrical service needed
- Allows periodic survey of entire fenceline
- Generally lower cost than fixed units
- Easy and quick installation
- Provides real-time data telemetry to central location

Disadvantages

- In general, not as complete a data base as with continuous samplers
- No GC for VOC speciation
- 24/7 monitoring becomes more difficult

Frequency of Air Sampling (contd.)

Integrated Sample Collection (8-72 hours)

Advantages

- Ability to collect a sample at multiple locations during the work day
- Reliability, some use conventional electrical power, others uses batteries, potential to use generators
- Ease of moving sample location
- Analytical results provide accurate, specific concentration of target parameter averaged over sample period

Disadvantages

- One sample per sampling period per site
- Data not available for up to 2-4 weeks after sample collection
- Analytical costs vary depending on parameter (\$25-250/sample)

Reporting

- Appropriate reporting guidelines are laid out to meet requirements of the program.
- Data should be properly archived and reported in a systematic manner on a central database system
- Proper Quality Assurance (QA) procedures are defined and followed.

Conceptual Design and Regulatory Review

- Prepare and discuss DRAFT design with site owner.
- Allow regulatory body (e.g., Federal, Provincial, Territorial, etc.) to review conceptual design of fenceline monitoring program.
 - Helps gain understanding of regulatory position on fenceline monitoring results.
- Obtaining up-front agreements with site owner and regulator(s) will save on potential valuable design time and save money

Monitoring Plan Generation

- Generate a formal monitoring plan based on project objectives, stakeholder needs, regulatory review and response to comments:
 - Monitoring objectives
 - Perimeter monitoring site locations
 - Monitoring protocols
- Frequency of sampling
- Instrumentation
- Action limits for various parameters
- Routine operations

- Data telemetry
- Data reporting
- Instrument calibration protocols.

 Obtain regulatory approval of monitoring plan prior to commencing monitoring program

Summary

- Many issues must be addressed in the design of a fenceline monitoring program for a remediation site.
- Must clearly define program objectives (internal and external).
- Goal is to design a technically defensible and cost-effective program.
- Neglecting some key issues can result in liabilities for site owner/remediation party or more elaborate and costly air monitoring programs than may be necessary.

Case Study – Air Quality Monitoring Plan: Giant Mine Remediation Project

Site Description

- 2,300-acre remediation site in Yellowknife, NT;
- Arsenic trioxide dust is the primary contaminant of concern (in soil and inside buildings)
- Sensitive receptors to the south
- Local and national public scrutiny.

Case Study – Air Quality Monitoring Plan: Giant Mine Remediation Project

Program

- Represents a complex and conservative approach to air monitoring.
 - Used a tiered approach (fenceline and in-community monitors).
- Fenceline monitoring of targeted COIs will be a project management tool for operations and local air quality.
- This will be supplemented by the fixed-station in-community air monitoring to track environmental trends beyond the fenceline.

Program Overview – Fenceline Monitoring

- Targeted parameters:
 - Particulate Matter the surrogate
 - Arsenic COI
 - Meteorology Supporting data
- Frequency/Duration:
 - Continuous measurements during remedial activities
- Action Levels:
 - Risk based development
- Measurement Locations
 - Based on real-time wind data and remedial activity location.

Program Overview – Community Monitoring

- Targeted parameters:
 - Trace metals (including arsenic), asbestos, PM₁₀
- Frequency/Duration:
 - Continuous and every three days
- Criteria:
 - Jurisdictional based
- Locations
 - Fixed at key residential communities

Questions?

Thank You

Jim Slack: Jim.Slack@aecom.com

Ajeev Mark Ramnauth: Ajeev.Ramnauth@aecom.com

