

Siloxanes: Quantifying a New Emergent Pollutant in Water, Air and Soil

Patrick Novak, B.Sc, P.Chem

RemTech 2013 October 16, 2013

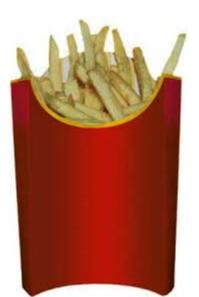
Outline

- Who is CARO?
- What are Siloxanes?
- Concerns
- Legislation

- Water Air and Soil Methodology
- Summary and Credits

Who is CARO?

- Western Canadian full service environmental lab:
 - Edmonton, Alberta
 - Vancouver, British Columbia (Head Office)
 - Kelowna, British Columbia
 - Whitehorse, Yukon
- Vision: CARING ABOUT RESULTS
 - Technical Leadership
 - Client Collaboration
 - Developed & Motivated Staff
- Capabilities:
 - Contaminated Sites: Hydrocarbons, SVOCs, VOCs, Metals
 - Water Quality: Physical Parameters, Nutrients, Anions, Metals
 - Microbiology and Toxicology
 - Award Winning Soil Vapour Capabilities!

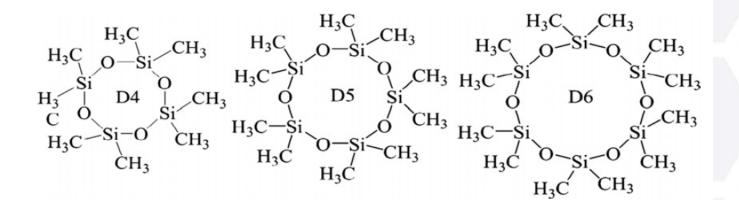

- Anthropogenic chemicals having a multitude of applications in the production of household, automotive, construction, and personal care products.
- Intermediates in the production of silicon polymers.
- Beneficial Properties
- Invented by DOW

- Emerging organic contaminants in the environment over the past two decades.
- D4 and D5 in one out of every seven of the 41,000 different personal care products
- Lipstick, body lotions, French fries, water repellents, and lubricants, amongst other things.

Structure

Si = 0 $Si = 0$ $Si = 0$ $Si = 0$ $Si = 0$ $R = Si = 0$					
Name	Formula	AKA			
Hexamethylcyclotrisiloxane	C ₁₂ H ₁₈ O ₃ Si ₃	D3			
Octamethylcyclotetrasiloxane	C ₈ H ₂₄ O ₄ Si ₄	D4			
Decamethylcyclopentasiloxane	C ₁₀ H ₃₀ O ₅ Si ₆	D5			
Dodecamethylcyclohexasiloxane	C ₁₂ H ₃₆ O ₆ Si ₆	D6			
Hexamethyldisiloxane	C ₆ H ₁₈ Si ₂ O	L2			
Octamethyltrisiloxane	C ₈ H ₂₄ Si ₃ O ₂	L3			
Decamethyltetrasiloxane	C ₁₀ H ₃₀ Si₄O ₃	L4			
Dodecamethylpentasiloxane	C ₁₂ H ₃₆ Si ₅ O ₄ L5				

Solubility in Water


- Relatively Low Solubility in Water
- Generally Decreasing Solubility with Size

Siloxane	Solubility (ug/L)
D4	56
D5	17
D6	5

Concerns

- Primary concerns
 - toxicity
 - destructive impact they have on biogas combustion equipment.
 - Prevalence in consumer products combined with their high volatility, bioaccumulation and relatively long half-lives in air.
 - These characteristics give way to concern about long range transport and bioaccumulation
 - Cyclic Siloxanes Octamethylcyclotetrasiloxane (D4), Decamethylcyclopentasiloxane (D5), and Dodecamethylcyclohexasiloxane (D6), shown below.

- Landfill sites
- Wastewater treatment plants and their surrounding areas
- Detecting the cyclic Siloxane D5 in indoor and outdoor air in various residential and commercial settings.
- Proving to be ubiquitous environmental contaminants, being detected at trace levels in even the most remote locations.

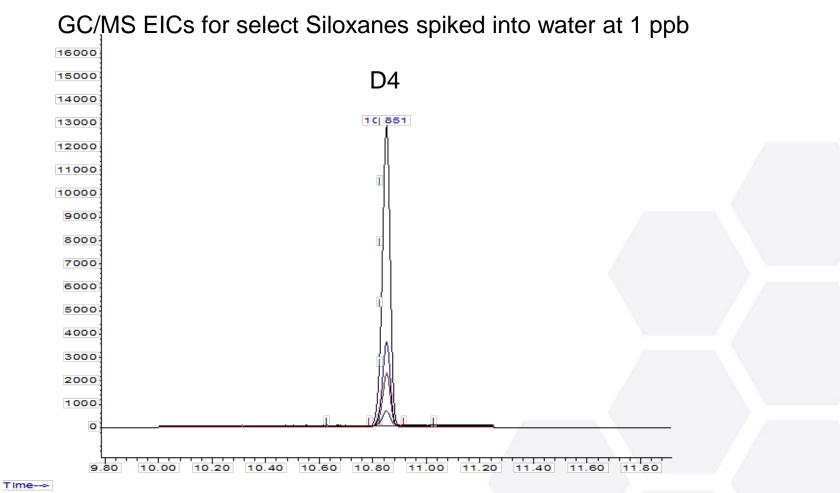
Legislation

Legislation

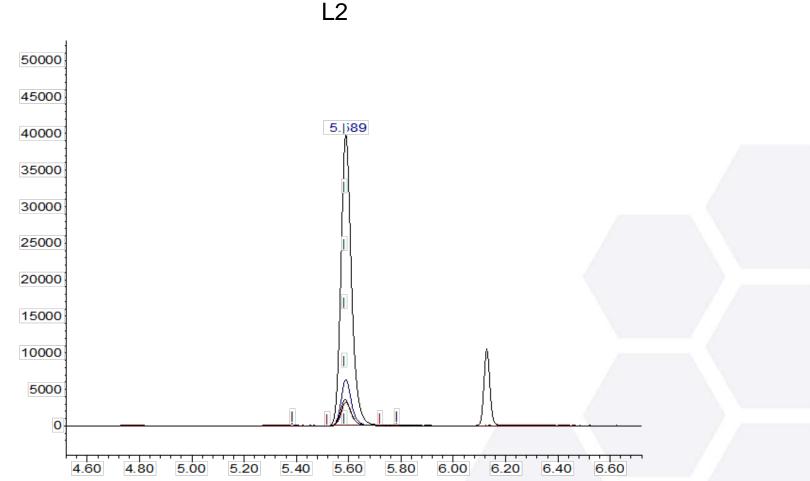
- Environment Canada has recently published a notice announcing the requirement for preparation and implementation of pollution prevention plans in respect to D4 in industrial effluents. 17.3 ug/L
- D4 has been identified by Environment Canada and Health Canada as potentially having "long-term harmful effects on the environment or its biological diversity", and as meeting the criteria of a persistent chemical in the environment (Environment Canada, 2012).

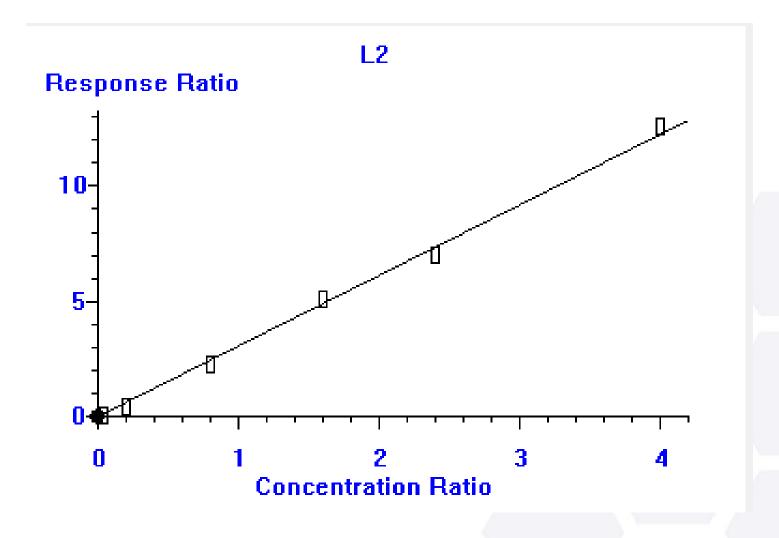
Legislation

 Additionally, D4 was recently added to a list of chemicals for further review by the U.S. EPA for 2013-2014, which could lead to regulations under the Toxic Substances Control Act.

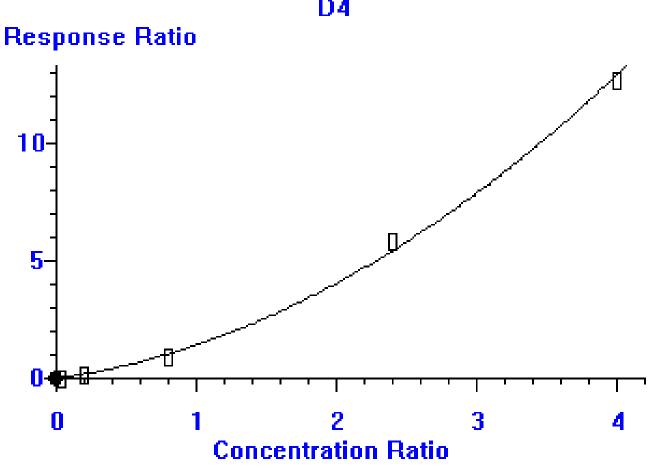


Siloxane	MDL (ug/L)	Precision (%)	Accuracy (%)
L2	0.19	2.9	109
L3	0.13	2.6	110
D4	0.98	7.3	127
D5	0.49	4.3	110


CARO's GC/MS method for the analysis of Siloxanes in water is for the quantitation of L2, L3, D4, and D5. The chromatographic sensitivity required for the anticipated regulatory limit of 17.3 ug/L for D4 was easily achieved.


Response in Water

GC/MS EICs for select Siloxanes spiked into water at 1 ppb



Siloxane in Water Calibration Curves (range is 0-100 ug/L)

Siloxane in Water Calibration Curves (range is 0-100 ug/L)

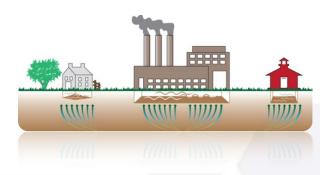
D4

• Analytes of Interest

- Hexamethyldisiloxane (L2),
- Octamethyltrisiloxane (L3),
- Octamethylcyclotetrasiloxane (D4),
- Decamethylcyclopentasiloxane (D5),
- 90%+ QC Recoveries
- Similar To Volatiles Methodology
- Short Hold Time
- No Headspace Samples
- Neutral pH Stability
- Glass Vials
- Reported Detection Limit 2 ug/L

Siloxanes in Air

- Turbo Matrix instrumentation:
 - First lab in western Canada (2008)
 - First lab with redundancy (2012)
- Accreditation Fall 2008



- First BC lab (Canadian Association for Laboratory Accreditation)
- Methods 2008/2009
 - BC Ministry of Environment
 - BC Environmental Laboratory Technical Advisory Committee
 - Authored VOC by TD-GCMS & VHv Methods
 - Fractionation: Aromatics and Non-Aromatics (Aliphatics)
- Method Development and SR&ED

• SR&ED Client Project – Siloxanes in Air

- 1,1,3,3-Tetramethyltrisiloxane,
- Pentamethyldisiloxane,
- Hexamethyldisiloxane (L2),
- Octamethyldisiloxane,
- Hexamethylcyclotrisiloxane (D3)
- Octamethylcyclotrisiloxane
- 90% + recoveries for QC
- Reported Detection Limit 0.01 ug
- VPHv quantitation

Siloxanes in Soil

Analytes of Interest

- Hexamethyldisiloxane (L2),
- Octamethyltrisiloxane (L3),
- Octamethylcyclotetrasiloxane (D4),
- Decamethylcyclopentasiloxane (D5),
- 90%+ QC Recoveries
- Similar To Volatiles Methodology
- Short Hold Time
- No Headspace Samples
- Reported Detection Limit 1ug/g
- Methanol Field Preservation?

Siloxanes QC

Internal Standard and Surrogates

- <u>Fluorobenzene</u>: Neat, Internal Standard.
- <u>Chlorobenzene-d5</u>: Neat, Internal Standard.
- <u>Toluene-d8</u>: Neat, Surrogate.
- <u>4-Bromofluorobenzene</u>: Neat, Surrogate.
- <u>1,4-Dichlorobenzene-d4</u>: Neat, Surrogate.

Quality Control Samples

- <u>Surrogate Standards:</u> Added to each sample and standard solution, and used to monitor the method performance on a sample-to-sample basis.
- <u>Method Blanks</u>: The laboratory blank consists of organic-free (P&T) water. Blanks should be below the reported detection limits.
- <u>Method (Blank) Spikes</u>: *This is equivalent to the Siloxane Calibration Verification Standard*.
- <u>Duplicates:</u> Duplicate sample analysis in batch to check reproducibility.

Future Developments

- Field Considerations
 - Sample Collection
 - Long term monitoring of sites
 - Seasonal variations
 - Site specific conditions

- Specialized Testing & Method Development
 - Siloxanes
 - Other Siloxanes
 - Degradation Products
 - Precursors
 - Others related potential contaminants of concerns
 - Hormones
 - Hormone mimickers
 - Drugs
 - Low Level Pesticides

- Siloxanes Are A Proven Potential Contaminant of Concern
- Predominantly Found in Landfill and Wastewater, but Not Well Understood in Other Areas – Human Exposure?
- Regulatory Environment Continuing to Identify New PCOCs Like Siloxanes
- Methodology for Water, Air & Soil Exists to Meet Future Regulations
- Continuous Advancements Adapting to Client and Market Forces

Acknowledgements

CARING ABOUT RESULTS Special Thanks To:

Contributions and support Caralee Bergeron, Stephen Varisco, Brent Coates, Patrick Novak, Doug Johnson, and Jaime Tkachuk of CARO Analytical Services.

Our Clients

CARO Analytical Services

Richmond, Kelowna, Edmonton

www.caro.ca

Brent Mussato, B.Sc. P.Chem - President (<u>bmussato@caro.ca</u>) Patrick Novak, B.Sc. P.Chem - Vice President (<u>pnovak@caro.ca</u>) Brent Coates, B.Sc. – Richmond Business Manager (<u>bcoates@caro.ca</u>) Stephen Varisco, B.Sc., P.Chem - Technical Manager (<u>svarisco@caro.ca</u>)