

Robert Martens, Banff, October 2013

Ex-Situ Chemical Oxidation a Proven Sustainable Remediation Alternative

Agenda

Cost Excavation and Disposal Volumes **Analysis** Safety and Contractor Management Northern Alberta **Case Study** Central Alberta GHG Emissions **Opportunity Conclusion**

Cost Analysis Excavation & Disposal Volumes

- Currently the majority (> 90%) of contaminated soil from downstream/midstream and upstream operations in AB & BC is disposed at landfills
- Several reasons for landfill disposal option:
 - Nature of contaminant(s)
 - Remoteness
 - Spacing requirements
 - Regulatory
- AB / BC landfills reported 925,000 tonnes / 5 year average
- Approximately 30% would be suitable for on-site treatment

Cost Analysis Safety and Contractor Management

- Transportation Safety Costs
 - 1,400 people injured every year as a result of heavy commercial traffic
 - Since 1998 average of 80 fatalities / year
- General Safety Costs
 - Flagging Crews
 - On-Site Safety Staff
 - Training and Orientation
- Contractor Management Costs
 - Training / Orientations / Contractor Competency Assessments
 - Fit for Work
 - Stakeholder Relations / General Public

Cost Comparison and Case Study 87-9 W6M

Cost Comparison and Emissions Case Study Central Alberta

- Contaminant Distribution BETX, F1 and F2
- In-situ System / Passive Remediation
- Risk Mitigation Strategy
 - Two Plant Sites:
 - 7,200 m³ impacted soil/groundwater
 - Oxidant demand = 655,000 kg to Tier 1
 - Costs First Year: \$ 280 K
 - Costs Year 2 to 5: \$ 80 K
 - Total Costs: \$ 600 K or ~ \$ 83.00 / m³

- 7,200
 - E>

 - TrBa

 - Nd

ral AB

engineering,

Robert Martens, Banff

Cost Comparison and Emissions Case Study

- 170 km distance
 - Trucking 350 loads = 59,500 km
 - Fuel Use: 7 mpg or 33.60 L / 100 km
 - Fuel Used: ~ 20,000 L
 - CO₂ Emissions from 1 L Diesel: 2.7 kg CO₂e
 - Total Emissions: 54 tCO₂e
- Increasingly important:
 - Full Cost Analysis
 - Social License to Operate
 - Sustainable Operations managing Environmental Liabilities
 - Perception Oil and Gas Industry

Emissions AB / BC Regional GHG Impact

- Disposal volumes AB / BC 925,000 tonnes / year
- Assumption that 30% or 277,000 tonnes can be treated
- Assume transportation distance to landfill is 150 km
- Fuel Use Transportation: 124,000 L diesel
- CO₂ Emissions from 1 L Diesel: 2.7 kg CO₂e
- Total Emission Reduction 334.8 tCO₂e / year

Opportunities?

- Was is the price of carbon?
 - In 2009, 8.2 billion metric tCO₂e was traded, > 68% from 2008
 - Value: \$ 144 billion US
 - EU: € 11.40 or ~ \$ 15.75 tCO₂e (credit)
 - US: $3 5 \text{ tCO}_2\text{e}$ (credit)
 - UK: £ 4 or ~ \$ 6.65 tCO₂e (penalty)
 - BC: \$ 14 − 18 tCO₂e (credit)
 - AB: \$ 15 tCO₂e non-compliance cost to climate fund / offset credit
- Carbon Trading Transportation Industry ?
- What if 75% can be reused, treated, immobilized?
 - $\sim 700,000 \text{ tonnes}$
 - 312,500 L diesel
 - 844 tCO₂e
 - Every L diesel is ~ \$ 0.04 CO₂e

Conclusions

- Opportunities to reduce remediation cost <u>and</u> associated emissions.
- Opportunity for carbon trading?
- Corporate Social Responsibility.
- Perception oil and gas industry.
- Social License to Operate.
- Incentive to Suppliers / Contractors ?