RemTech 2013

Success Through Science®

ANALYSIS OF ELEMENTAL SULPHUR IN SURFICIAL ALBERTA SOIL SAMPLES BY HPLC

Presented by: Dr. Heather L. Lord

Success Through Science®

Heather L. Lord,¹ Z. Chi Chen,² Lusine Khachatryan,¹ Dina Tleugabulova,¹ Mariana Cojocar,¹ Bonnie Leung,² Catherine Evans,² Barry Loescher¹

- 1. Maxxam Analytics International Corporation
- 2. Environment and Sustainable Resource Development (ESRD), Government of Alberta

Background

Success Through Science®

Elemental Sulphur (S8): major by-product in Oil & Gas industry

4.37 million tonnes produced in Alberta, 2012 (ERCB, 2013)

The environmental problems associated:

- On-site Strong acidification in soils, groundwater, S-containing waste, S-contaminated soils
- Off-site Vegetation damage, soil acidification with airborne S dust

Success Through Science®

Land and Forestry Policy Branch, Environment and Sustainable Resource Development (ESRD)

ESRD regulates elemental S largely through:

- > Alberta Tier 1 Soil and Groundwater Remediation Guidelines
- Guidelines for landfill disposal of sulphur waste and remediation of sulphur containing soils
- Directive for monitoring the impact of sulphur dust on soils http://environment.gov.ab.ca/info/library/8433.pdf

Available Analysis Method has Limitations

Success Through Science®

Colorimetric method

- based on Can. J. Soil Science, 1985, 65, 811-813:
- Acetone extraction
- Reaction of S8 with sodium cyanide
- Lack of sensitivity
 - Regulatory criterion @ 500 mg/kg; RDL @ 300 mg/kg
 - Insufficient at low levels problematic for baseline monitoring
- High method uncertainty at criterion level: 500 mg/kg
- Lack of specificity/selectivity
 - Interferences from organics
 - 70% of elemental S handling/processing plants in Alberta are located in forested areas.

New Method Development Project Initiated

Supported by ESRD's Land Monitoring Funding

Analytical challenge: need suitable methods for elemental sulphur

- High selectivity, good sensitivity
- > Compatible with commercial laboratory requirements
- Forest litter samples reduce/eliminate interference

Input from a network of commercial laboratories:

- \rightarrow Need for standard operating procedures (SOP)
- \rightarrow LC method desired due to required selectivity/sensitivity

Maxxam Analytics was contracted to refine existing or develop new methods

Existing LC Methods

- Watkins et al. 1987, LC/UV method for S8 analysis from soil
 - Aust. J. Soil Res. 1987, 25, 167-78
 - Method had proven valuable in Australia/NZ for mineral soils
 - Employed older LC technology
 - Chloroform extraction
 - Polymeric column, large particle size, solid-liquid partitioning
 - Chloroform mobile phase toxic
 - UV detection, 254 nm
- Goal: newer column technology and less toxic mobile phase
 - Azarova et al. J. Anal. Chem., 2001, 56, 1062-66 (sediment analysis)
 - Acetone extraction
 - C18 column, methanol mobile phase, UV detection, 200 nm

Sulphur-Solvent Solubility Studies

- Acetone following Maynard and Addison (1985) and Azarova (2001)
- Chloroform following Watkinson et al (1987)
- Dichloromethane (DCM) common laboratory solvent for soil extractions
- Methanol target mobile phase

Sulphur-Solvent Solubility Studies

Success Through Science®

Excess solid S added to solvent, sonicated 1 hr, centrifuged, decanted, analyzed colorimetrically

Acetone	612 mg/L (n=3)	Incomplete, very small amount of dusty sediment
DCM	6330 mg/L (n=3)	Incomplete, visible amount of sediment
Chloroform	6670 mg/L (n=1)	Incomplete, visible amount of sediment
Methanol	257 mg/L (n=3)	Incomplete, visible amount of dusty sediment

Azarova (2001) reported acetonitrile solubility @ 75 µg/mL

Extraction Efficiency Study

Success Through Science®

Samples used:

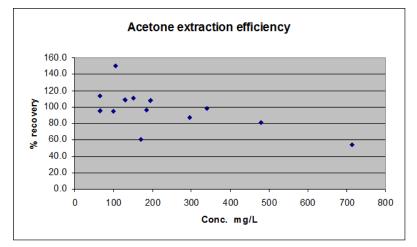
- Mineral soils:
 - → High organic clay (9% o.c.), Low organic clay (2% o.c.)
- Leaf litters
 - > White spruce, Lodgepole pine, Aspen
- Samples dried at 60 °C, ground to <2 mm.

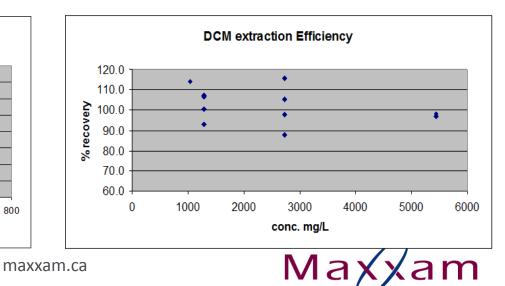
Extraction Solvents:

Chloroform, DCM, Acetone

Extraction Efficiency Study

- Solvent / Soil ratios targeted 2:1 5:1 10:1 20:1
 - Insufficient solvent recovery from leaf litter soils at 2:1
 - Excessive solvent use, loss of sensitivity at 20:1
- Soil aliquots spiked with S8 in DCM, mixed, allowed to evaporate overnight
- Extraction:
 - Solvent added at the desired ratio
 - solvent/soil mixed,
 - sonicated 30 min, tumbled 1 hr., centrifuged,
 - Analysed by both colorimetry and LC
 - DCM interfered with colorimetric method unless diluted with acetone


Extraction Efficiency Study Results


Observations:

- Acetone is sufficient up to 400 mg/L
- DCM & chloroform sufficient to 6,000 mg/L

Implementation:

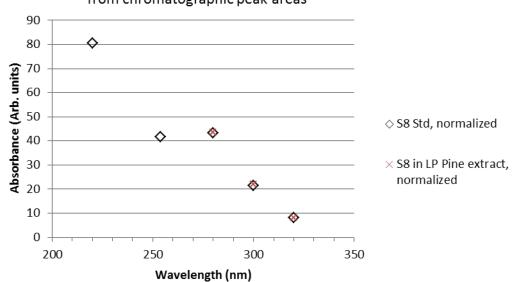
- Solvent/soil ratio 10:1
- Acetone to be used as routine up to solubility limit
- If soils have higher S8 amounts, re-extract with DCM

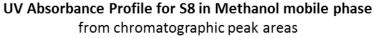
Extract Ratio (Solvent to Soil)	Design µg/mL	Average Recovery	Standard Deviation
10 to1	2	130% (106%)	26%
5 to 1	4	104%	23%
10 to 1	10	88%	11%
5 to 1	20	87%	12%

Recoveries from High Organic Soil

Sample	Spike level (µg/g)	Average Recovery	RSD	Sample Size (n)
Acetone Extract				
Lodgepole Pine	20	118%	9.2%	8
High Organic Clay	20	113%	11.5%	8
Lodgepole Pine	200	101%	9.5%	8
High Organic Clay	200	105%	3.2%	8
Lodgepole Pine	1,000	84%	1.4%	6
High Organic Clay	1,000	90%	0.8%	6
Lodgepole Pine	3,600	98%	3.4%	6
High Organic Clay	3600	106%	3.6%	6
DCM Extract				
Lodgepole Pine	200	94%	4.5%	8
High Organic Clay	200	89%	4.1%	9
Lodgepole Pine	10,000	101%	6.6%	6
High Organic Clay	10,000	98%	7.1%	6
Lodgepole Pine	36,000	98%	4.3%	5
High Organic Clay	36,000	93%	5.5%	6
	Overall Average	99.1%	5.3%	

LC Method Development Goals

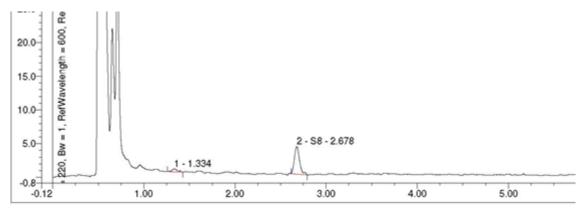

- C18 stationary phase:
 - AkzoNobel Kromasil[®] C18 column (100 mm x 4.6 mm, 3.5 μm particle size)
 - Guard Column, C18 (10 mm x 4.6 mm, 5 μm particle size)
- Lower UV wavelengths for better detection sensitivity
 - Chloroform has a high UV cut-off
- Determine selectivity/sensitivity
- Determine column capacity and resolution
 - primary drivers in method development



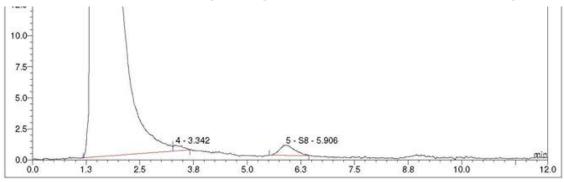
UV Detection

UV Cut-offs:

- Chloroform: 245 nm
- Methanol: 205 nm
- Acetone: 330 nm


LC Method Comparison

Success Through Science®


Selected C18/methanol method over CHCl₃/chloroform

- Mainstream technology
- Better S8 peak shape and resolution
- Low toxicity of methanol vs. chloroform
- Chloroform mobile phase requires normal phase (Teflon) pump seals

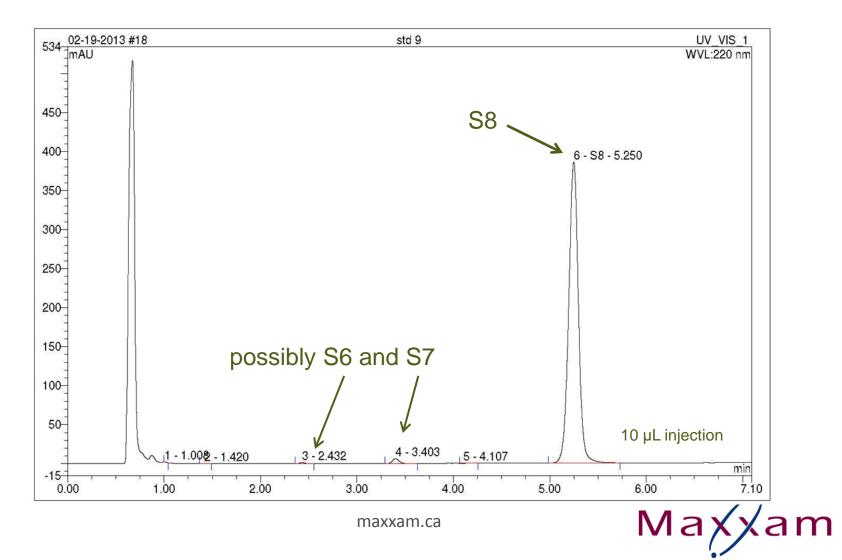
C18/methanol - High Organic Clay in Acetone (2 µg/mL)

PRP/chloroform - High Organic Clay in Acetone (2 µg/mL)

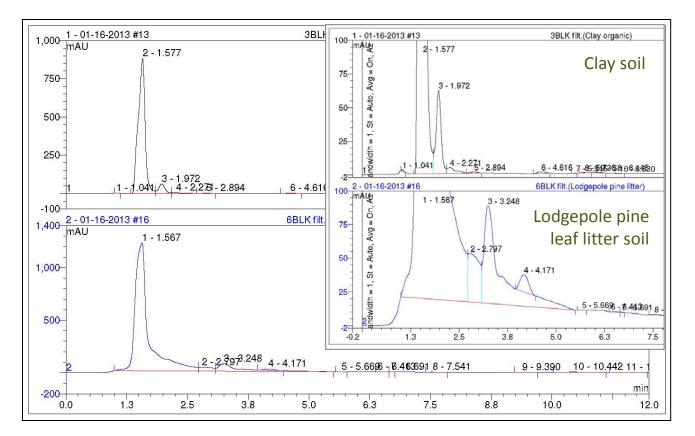
Method Development Decisions

Success Through Science®

The following consensus was reached for validation:

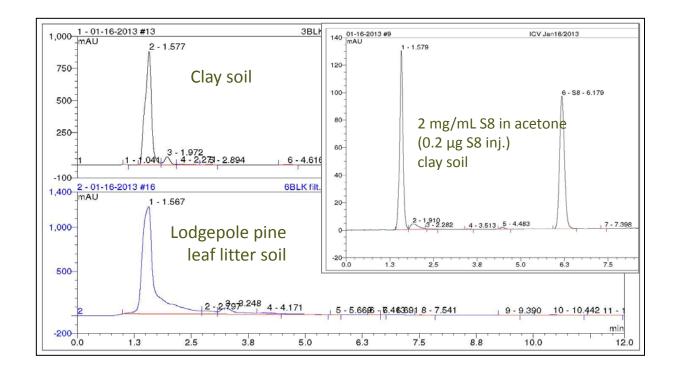

- Solvent/soil extraction ratio: 10/1
- Validate both methods: acetone-HPLC & DCM-HPLC.
- HPLC using detection wavelength 220nm, C18 column, methanolwater isocratic mobile phase
 - DCM extracts diluted 10x with acetone
 - Acetone extracts run undiluted

Methods to be optimized using difficult samples


- High organic clay (HOC) (most difficult to extract)
- Lodgepole pine litter (most interferences)

S8 Standard Injection (20 µg/mL)

Soil Extraction Results -Interferences

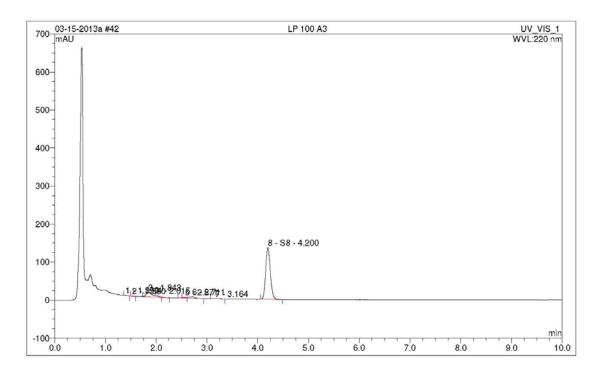


- High levels of co-extracted polar materials in Alberta leaflitter soils
- Must be removed to avoid high bias

Elemental Sulphur: Soil Extraction Results

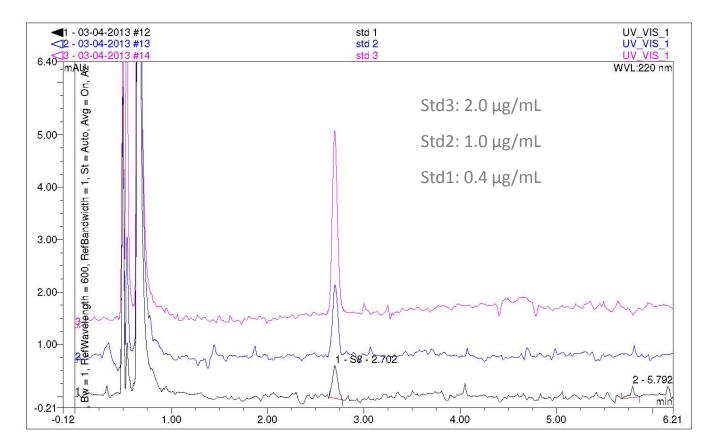
Success Through Science®

Chromatographic method separates S8 from interferences

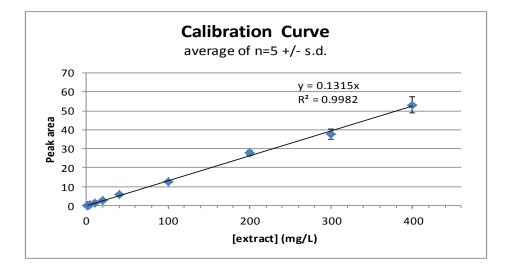


maxxam.ca

Final Chromatographic Conditions


Success Through Science®

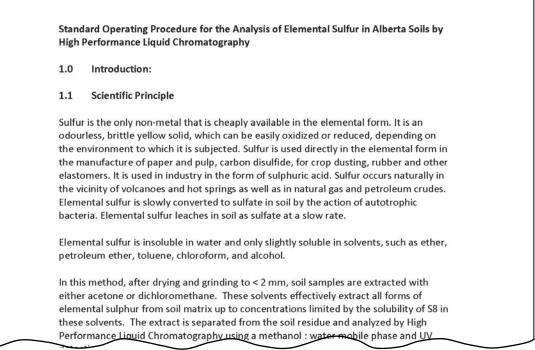
Lodgepole pine litter, S8 spiked at a concentration of 1,000 μ g/g,. acetone extract concentration 100 μ g/mL mobile phase 90:10 MeOH:H₂O.


Standards at 0.4, 1.0, 2.0 μg/mL

Optimized Method – Calibration and MDL

Success Through Science®

Method Detection Limits


μg/g Elemental Sulphur						
Acetone Extract	Day 1	Day 2	Average	-		
Lodgepole Pine	6.4	5.4	6.8	-		
ligh Organic Clay	6.2	9.3				
DCM Extract	Day 1	Day 2	Average	-		
Lodgepole Pine	19	44	33.5	-		
ligh Organic Clay	35	36				
	maxxaı	n.ca	Max	Jan		

SOP Development

Success Through Science®

- Full SOP developed as part of the project
- Freely available to interested laboratories
- Contact either Maxxam or ESRD for a copy

.....

Round-Robin Study

- Six Canadian labs participated in the study
- Samples selected as some of the more challenging Alberta soils
- Duplicate samples provided to all participants
- Participants selected their method of choice
 - Two HPLC methods (described method and one other)
 - Two colorimetric methods
 - Two ICP methods

Sample Type	Spike Level	Spike Level	
Lodgepole Pine	Low spike	High Spike	
High Organic Clay	Low spike	High Spike	
Peat	Low spike	High Spike	
Natural Sample	No Spike	-	
CRM	As per CRM	-	

Quantitative Results (µg/g)

Success Through Science®

		CRM	ESRD	LPP	LPP	LPP	НОС	НОС	Peat	Peat	Peat
Technique		5000		30	500	0	80	2000	30	300	0
HPLC Ref		3515	1423	33	478	<10	80	1965	262	621	252
		3464	1423	37	492	<10	80	2077	295	596	194
Colour 1		4524	1808	44**	465	47*	92	1864	300	543	290
				46**	473	50*	105		270	568	
HPLC2		2720	1360	27	425	<1	63	1460	226	460	199
Colour 2		3830	1920	69	585	124	93	2181	373	610	389
ICP 1		2970	1050	20	293	<10	45	1590	176	388	192
ICP 2		3100	1110	<10	177	<10	52	1680	233	512	277
	mean	3439	1445	34	424		76	1831	267	537	256
	stdev	661	356	21	129		21	265	59	81	71
	RSD	19%	25%	62%	30%		28%	14%	22%	15%	28%

* uncorrected for background

** background corrected

Recovery Results

Г

Recovery	CRM	LPP 30	LPP500	HOC80	HOC2000	Peat30	Peat300
HPLC Ref	70%	117%	97%	100%	101%	185%	129%
Colour 1	90%	150%	94%	123%	93%	<	89%
HPLC2	54%	90%	85%	79%	73%	90%	87%
Colour 2	77%	230%	117%	116%	109%	<	74%
ICP 1	59%	65%	59%	56%	80%	<	65%
ICP 2	62%	<33%	35%	64%	84%	<	78%

Average Recovery of Spiked Samples (exc. LPP30 and Peat 30)									
	Recovery	Stdev	Min	Max					
HPLC Ref	105%	15%	97%	129%					
Colour 1	104%	16%	123%	89%					
HPLC2	81%	6%	73%	90%					
Colour 2	106%	21%	74%	117%					
ICP 1	63%	11%	56%	80%					
ICP 2	65%	22%	<33%	84%					

Round Robin Summary

- There were no outliers for any of samples as determined by the Grubb's test (P = 0.05).
- The HPLC method developed for ESRD performed well for a variety of different and difficult matrices, typical of Alberta soils.
- The colorimetric procedure, when background correction is applied, also performed well.
- The low bias for the ICP and HPLC2 procedures was likely due to incomplete extraction.

Questions?

science@maxxam.ca

maxxam.ca