

Impact of Peristaltic Pump Tubing type on Organic Analyte Concentrations

Robert Hamel, PhD

Background

Low flow rate purging and sampling

Advantages

- Samples representative of the 'mobile' load of contaminants present.
- Minimal drawdown
- Reduced need and/or time for filtration
- Less purging volume (reduced waste disposal cost sampling time)
- Reduction in sampling variability (ex: turbidity)

Background

Low flow rate purging and sampling

Disadvantages

- Higher initial capital costs
- Greater set-up time
- More equipment to transport to and from the field
- More training required
- Concern that new data will indicate a "change in conditions"

Background

Low-Flow Sampling Devices:

- Peristaltic pumps
- Bladder pumps
- Electrical submersible pumps
- Gas-driven pumps

Note: bailers, and other "grab" type samplers are not suited for lowflow sampling. Also, lift foot-valve samplers may cause too much disturbance

Service Beyond Analysis - www.agatlabs.com

Experimental Design

Objectives:

To determine whether the use of elastic tubing in a peristaltic pump results in a negative bias in the concentration of Organic Analytes for Ground Water samples collected using a low-flow sampling protocol.

To evaluate the impact of the sampling method on analyte recovery.

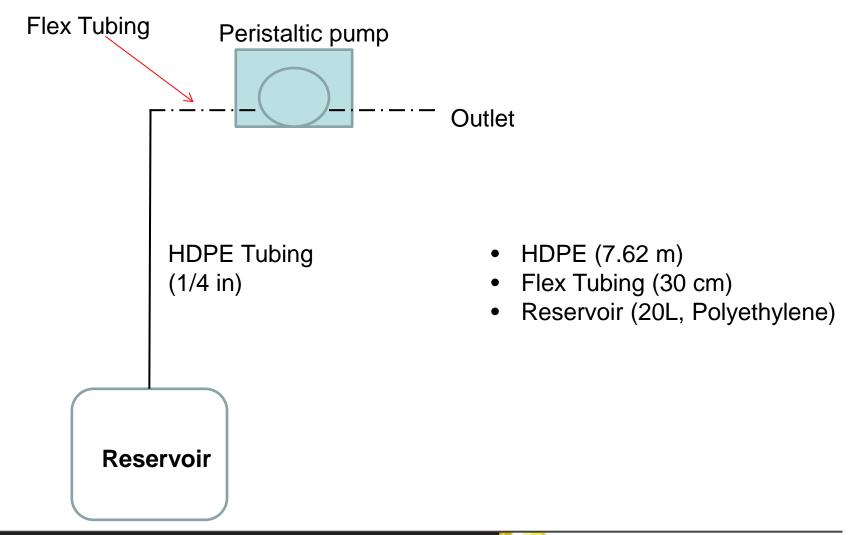
To study the impact of Ground Water PAH concentrations in the presence of Sediment/Particulate in ground water samples. (Data Review)

Service Beyond Analysis - www.agatlabs.com

Experimental Design

Experimental Variables:

- Type of elastic tubing (Silicone, Viton)
- Analyte Hydrophobicity
- Flow rates (100 mL/min, 300 mL/min, 500 mL/min)


Analytes:

• Polycyclic Aromatic Hydrocarbons (PAH).

Service Beyond Analysis - www.agatlabs.com

Experimental Design

Service Beyond Analysis - www.agatlabs.com

Average Percent Recoveries of PAHs From Polyethylene Reservoir (Grab Sample)

Experimental Controls	Polyethylene Reservoir (MilliQ Water) Initial	Polyethylene Reservoir (MilliQ Water) Final	Spiked Reservoir Initial	Spiked Reservoir Final
PA	H			
Naphthalene	ND	ND	105%	98%
Acenaphthylene	ND	ND	98%	84%
Acenaphthene	ND	ND	98%	77%
Fluorene	ND	ND	98%	84%
Phenanthrene	ND	ND	105%	84%
Anthracene	ND	ND	84%	83%
Fluoranthene	ND	ND	91%	90%
Pyrene	ND	ND	91%	83%
Benz(a)anthracene	ND	ND	57%	56%
Chrysene	ND	ND	77%	66%
Benzo(b)fluoranthene	ND	ND	55%	47%
Benzo(k)fluoranthene	ND	ND	105%	98%
Benzo(a)pyrene	ND	ND	77%	70%
ndeno(1,2,3-cd)pyrene	ND	ND	70%	70%
Dibenz(a,h)anthracene	ND	ND	37%	38%
Benzo(g,h,i)perylene	ND	ND	58%	58%
2-and 1-methyl Naphthalene	ND	ND	119%	98%

Flex Tubing	Silicone Tubing 100 mL/min	Viton Tubing 100 mL/min
РАП		
Naphthalene Acenaphthylene	75% ± 8% 58% ± 4%	82% ± 4% 60% ± 2%
Acenaphthene	52% ± 4%	54% ± 3%
Fluorene	51% ± 3%	52% ± 2%
Phenanthrene	49% ± 2%	49% ± 2%
Anthracene	41% ± 2%	41% ± 3%
Fluoranthene	42% ± 2%	42% ± 2%
Pyrene	43% ± 1%	43% ± 1%
Benz(a)anthracene	34% ± 0%	34% ± 2%
Chrysene	44% ± 1%	45% ± 1%
Benzo(b)fluoranthene	32% ± 4%	30% ± 2%
Benzo(k)fluoranthene	67% ± 5%	69% ± 8%
Benzo(a)pyrene	49% ± 1%	49% ± 3%
Indeno(1,2,3-cd)pyrene	61% ± 4%	62% ± 4%
Dibenz(a,h)anthracene	36% ± 12%	41% ± 7%
Benzo(g,h,i)perylene	60% ± 17%	63% ± 13%
2-and 1-methyl Naphthalene	70% ± 6%	72% ± 4%

Flow rate			
	100 mL/min	300 mL/min	500 mL/min
PA	νH		
Naphthalene	75% ± 8%	89% ± 4%	94% ± 4%
Acenaphthylene	58% ± 4%	64% ± 5%	84% ± 3%
Acenaphthene	52% ± 4%	59% ± 6%	73% ± 5%
Fluorene	51% ± 3%	57% ± 7%	67% ± 2%
Phenanthrene	49% ± 2%	59% ± 8%	65% ± 3%
Anthracene	41% ± 2%	43% ± 7%	60% ± 2%
Fluoranthene	42% ± 2%	46% ± 8%	61% ± 6%
Pyrene	43% ± 1%	46% ± 8%	56% ± 3%
Benz(a)anthracene	34% ± 0%	35% ± 6%	45% ± 4%
Chrysene	44% ± 1%	46% ± 5%	57% ± 5%
Benzo(b)fluoranthene	32% ± 4%	30% ± 5%	41% ± 5%
Benzo(k)fluoranthene	67% ± 5%	75% ± 8%	84% ± 4%
Benzo(a)pyrene	49% ± 1%	51% ± 2%	52% ± 4%
Indeno(1,2,3-cd)pyrene	61% ± 4%	57% ± 3%	65% ± 4%
Dibenz(a,h)anthracene	36% ± 12%	41% ± 1%	45% ± 4%
Benzo(g,h,i)perylene	60% ± 17%	61% ± 2%	64% ± 3%
2-and 1-methyl Naphthalene	70% ± 6%	86% ± 11%	90% ± 7%

	500 mL/min	Spiked Reservoir Initial	Spiked Reservoir Final
Naphthalene	94% ± 4%	105%	98%
Acenaphthylene	84% ± 3%	98%	84%
Acenaphthene	73% ± 5%	98%	77%
Fluorene	67% ± 2%	98%	84%
Phenanthrene	65% ± 3%	105%	84%
Anthracene	60% ± 2%	84%	83%
Fluoranthene	61% ± 6%	91%	90%
Pyrene	56% ± 3%	91%	83%
Benz(a)anthracene	45% ± 4%	57%	56%
Chrysene	57% ± 5%	77%	66%
Benzo(b)fluoranthene	41% ± 5%	55%	47%
Benzo(k)fluoranthene	84% ± 4%	105%	98%
Benzo(a)pyrene	52% ± 4%	77%	70%
Indeno(1,2,3-cd)pyrene	65% ± 4%	70%	70%
Dibenz(a,h)anthracene	45% ± 4%	37%	38%
Benzo(g,h,i)perylene	64% ± 3%	58%	58%
2-and 1-methyl Naphthalene	90% ± 7%	119%	98%

SORPTION

Interaction of a contaminant with a solid

- **Adsorption:** Interaction with the surface of a solid.
- **Absorption:** Uniform penetration of the solid by a contaminant.
- **Sorption:** Generic term that encompasses both phenomena

Factors Affecting the Interaction of a Contaminant and the Surface of Soil or Aquifer Materials

- Chemical and physical characteristics of the contaminant
- Composition of the surface of the solid
- The fluid media

Sorption and Physical and Chemical Properties of Contaminants

- Redox Potential
- Acid/Base Chemistry
- Partition Coefficient (K_{ow})
- Polar/Ionic Character
- Water Solubility

Soil Characteristics Affecting Sorption

- Surface Area
- Surface Charge
- Organic Content
- Texture
- Homogeneity
- Permeability or porosity
- Mineralogy

Affect of Sediment on GW PAH Data

		O.Reg. 153/04 Regulatory Limit (ug/L)	Sediment-Flagged Samples	Non-Flagged Samples	Log Kow
	PAH				
Naphthalene		7	6%	0.2%	3.37
Acenaphthene		4.1	2%	0.0%	3.98
Acenaphthylene		1	4%	0.1%	4.07
Fluorene		120	3%	0.0%	4.18
Phenanthrene		0.1	15%	7.7%	4.46
Anthracene		0.1	6%	2.2%	4.5
Pyrene		0.2	6%	2.2%	4.88
Fluoranthene		0.4	4%	0.7%	4.9
Benz(a)anthracene		0.2	6%	0.5%	5.63
Chrysene		0.1	7%	1.4%	5.63
Benzo(b)fluoranthene		0.1	8%	1.4%	6.04
Benzo(a)pyrene		0.01	6%	2.2%	6.06
Indeno(1,2,3-cd)pyrene		0.2	5%	0.2%	6.58
Benzo(g,h,i)perylene		0.2	8%	0.2%	6.78
Benzo(k)fluoranthene		0.1	10%	1.0%	6.84
Dibenz(a,h)anthracene		0.2	0%	0.0%	6.86

1000 randomly selected GW samples flagged for the presence of sediment 1000 randomly selected sediment-free samples

Conclusions

- Silicone vs. Viton tubing use in the peristaltic pump did not show any significant changes in PAH recoveries
- Higher flow rates showed improved PAH recoveries
- HDPE Tubing resulted in bias low PAH recoveries
- Sediment in GW samples resulted in elevated PAH values

1000 randomly selected GW samples flagged for the presence of sediment 1000 randomly selected sediment-free samples

THANK YOU

Acknowledgements

Mr. John Newall

Waterra Pumps Ltd. Mississauga, Ontario

