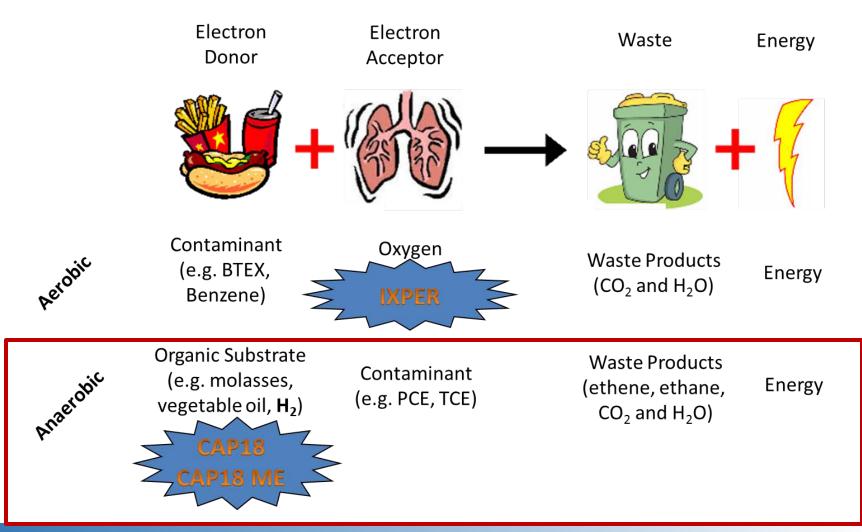


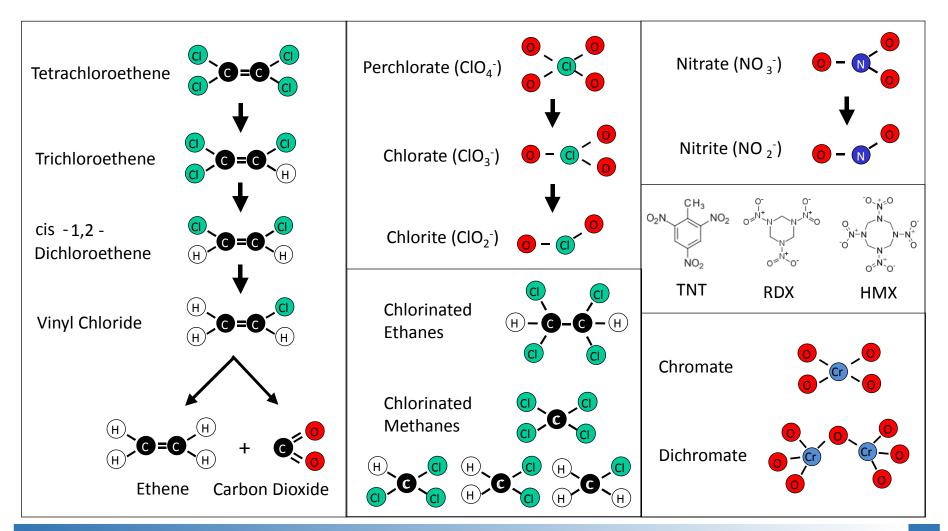
ONE COMPANY, ENDLESS SOLUTIONS

Non-Emulsified Vegetable Oil Blend for Enhanced Anaerobic Bioremediation Pamela J Dugan, PhD, PG, Carus Corporation; John Hesemann, PE; Burns & McDonnell RemTech 2013


Agenda

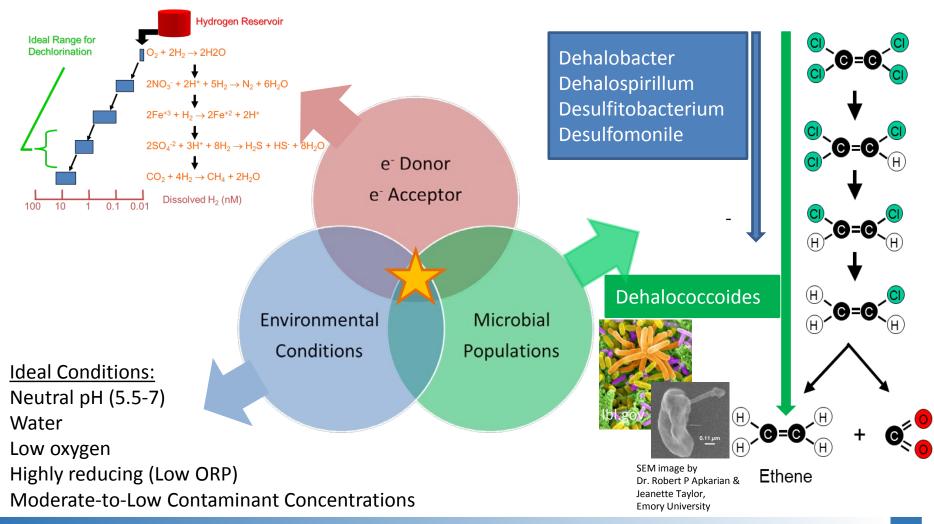
- Overview Anaerobic Bioremediation
 - CAP 18[®] and CAP 18[®] ME Anaerobic Bioremediation Products
 - Hydrogen Yield/Hydrogen Efficiency
 - Design Software
 - Conceptual Approaches/Examples
 - ≻ CAP 18 Case Study
 - Conceptual Approaches
 - Concluding Remarks/Questions

Basics of Bioremediation

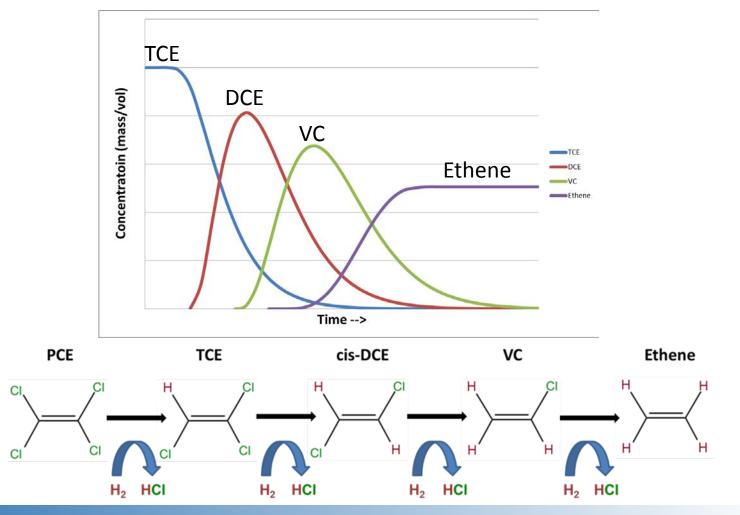


CARUS CORPORATION

CARUS



Potential Contaminants Anaerobic



When does Bioremediation Work?

Reductive Dechlorination

CAP 18 and CAP 18 ME

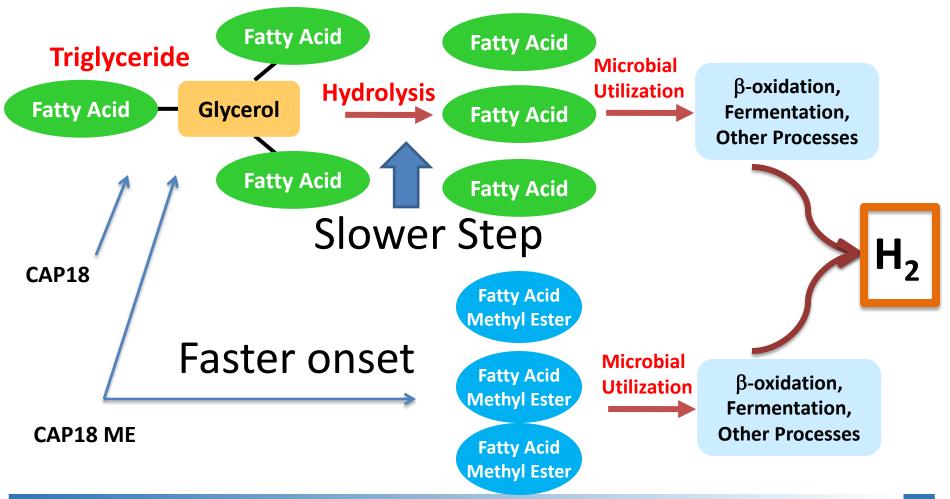
- Unemulsified oil products
- Refined from natural vegetable oils
 - Blend of triglycerides
- Much longer lifetime
- Lower cost

- Product cost per unit of hydrogen production
- Injection/remobilization single injection lasts years
- CAP 18 ME formulated for accelerated onset of dechlorination

Comparison to Emulsified Products

Vegetable Oil Emulsions

- 40-60% vegetable oil
- Tiny droplets
- Higher surface area
 - Consumed faster
- Shorter lifetime (months to 1-2 years)
- Higher cost per pound of active ingredient
- Lower hydrogen yield per Kg



- 100% vegetable oil blend
- Large droplets
- Lower surface area
 - Consumed slower
- Longer lifetime (3-5 years or longer)
- Lower cost per pound of active ingredient
- Higher hydrogen yield per Kg

Vegetable Oils Hydrolyze to Release Fatty Acids

Hydrolysis of volatile fatty acids (VFA) occurs slowly, CAP18 provides long-term VFA release

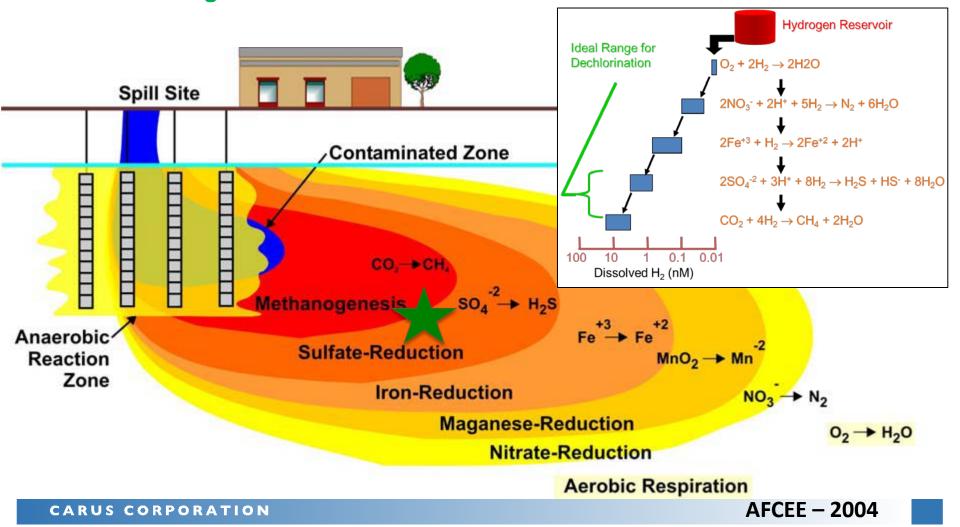
Quantify Substrate Longevity – H₂ Release Potential

Substrate + Water \rightarrow H₂ + Bicarbonate⁽⁻⁾ + Hydrogen ion⁽⁺⁾

Ethyl Lactate: $C_5H_{10}O_3 + 12H_2O - 12H_2 + 5HCO_3^- + 5H^+$ Sodium Lactate: $NaC_{3}H_{5}O_{3} + 6H_{2}O \rightarrow 6H_{2} + 3HCO_{3}^{-} + Na^{+} + 2H^{+}$ Ethanol: $C_2H_6O + 5H_2O \rightarrow 6H_2 + 2HCO_3^- + 2H^+$ Molasses: $C_{12}H_{22}O_{11} + 25H_2O \rightarrow 24H_2 + 12HCO_3^- + 12H^+$ Glycerol: $C_{3}H_{8}O_{3} + 6H_{2}O \rightarrow 7H_{2} + 3HCO_{3}^{-} + 3H^{+}$ Soybean Oil (Linoleic Acid): $C_{18}H_{32}O_2 + 52H_2O \rightarrow 50H_2 + 18HCO_3^- + 18H^+$

For each mole of ethyl lactate fermented, produce 12 moles of hydrogen

For every mole of soybean oil, we produce 50 moles of hydrogen


Hydrogen Release Potential

Using complete conversion to hydrogen cation, bicarbonate, and dihydrogen gas									
			Percent		H ₂ (mol) per	H ₂ (g) per	H ₂ (g) per	H ₂ (g) per	
	Chemical		Composition		substrate	substrate	product	product	
Bioremediation Product	Formula	MW	(% by weight) ¹			(mol) ²	(mol)	(kg) ³	(Ib) ³
		grams/mol	Substrate	Emulsifier	Water				
Ethyl Lactate	C ₅ H ₁₀ O ₃	118.2	98		2	12	24.24	201.06	91.22
Sodium Lactate	$NaC_3H_5O_3$	112.1	60		40	6	12.12	64.89	29.44
Ethanol	C₂H ₆ O	46.I	80		20	6	12.12	210.42	95.47
Molasses	C ₁₂ H ₂₂ O ₁₁	342.3	60		40	24	48.48	84.97	38.55
Glycerol	C ₃ H ₈ O ₃	92.1	75			7	14.14	115.13	52.24
CAP 18 [®] Anaerobic	Proprietary	~280	100 0		50	101	360.07	163.37	
Bioremediation Product	blend	~200	100		Ŭ	50	101	300.07	105.57
Emulsified Vegetable Oil (60%)	C ₁₈ H ₃₂ O ₂	280.5	60	10	30	50	101	216.04	98.02
Emulsified Vegetable Oil (40%)	C ₁₈ H ₃₂ O ₂	280.5	40	10	50	50	101	144.03	65.35
Emulsified Vegetable Oil (35%) +	C ₁₈ H ₃₂ O ₂	280.5	35	10	20	50	101	197.83	89.76
Ethyl Lactate (35%)	$C_5H_{10}O_3$	118.2	35	10	20	12	24.24		
General formulations for competitor bioremediation products									
² Calculated from the reaction of substrate and water to bicarbonate, hydrogen ion and hydrogen gas									
³ Calculated from % composition (by weight)									

CARUS®

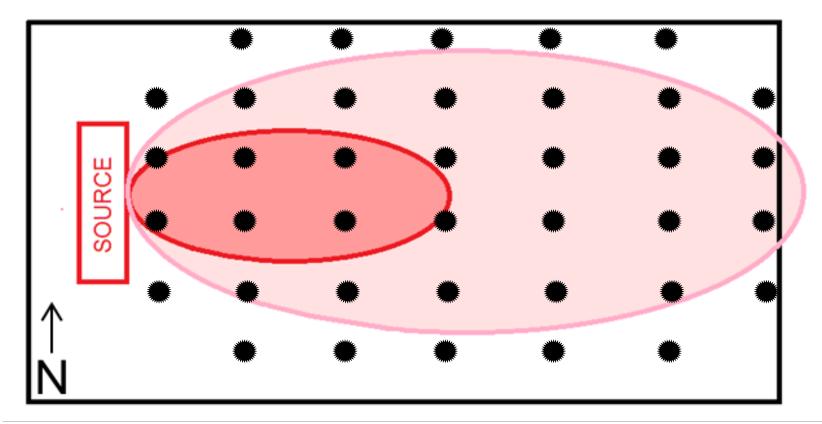
"Footrace of Hydrogen"


- Native microbes will deplete most easily reduced electron acceptors first
- Added substrate must be sufficient to overcome background demand before sulfate-reducing conditions occur and reductive dechlorination

Significant Cost Savings

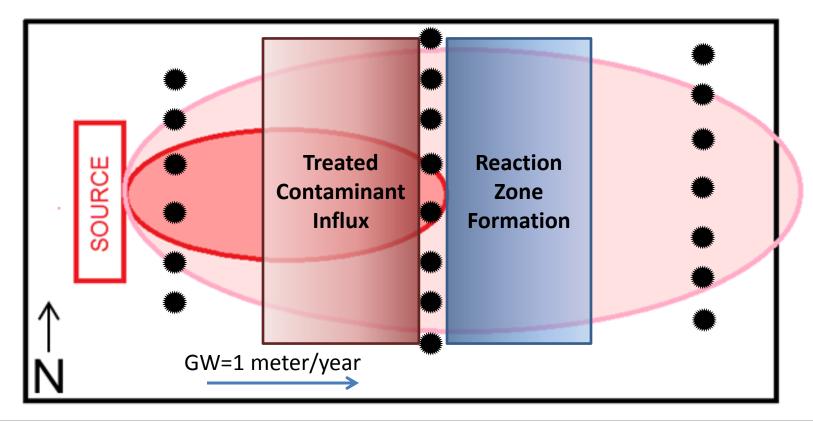
More hydrogen = longer lasting activity

The result is more cost savings



CARU

\$\$



Design Example 1: Cascade (Grid Reactive Zone)

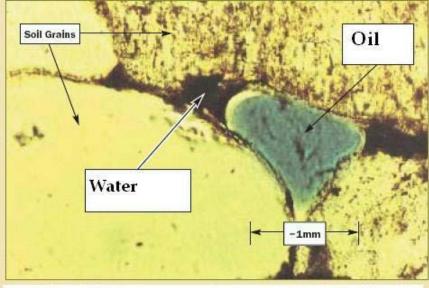
Accounts for contaminant mass in aqueous phase, but also contaminant mass that is sorbed to soil

Design Example 2: Curtain (Repeating Barriers)

- Accounts for contaminant mass in the aqueous phase
- Curtains designed to have an estimated lifetime of 3-5 years

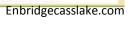
CARI

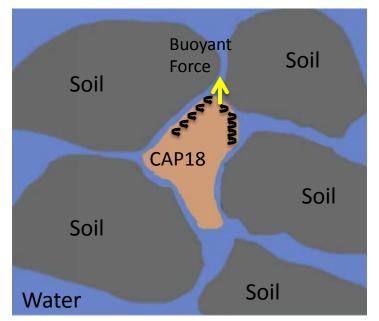
CAP 18 and CAP 18 ME Design Calculator

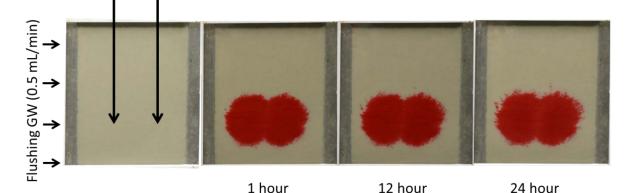

- Site Conditions
 - Contaminated Area
 - Depth
 - Porosity
 - Hydraulic Gradient/Conductivity
- Contaminant Properties
 - ➤ Types
 - Concentration
- Background Demand
 - Oxygen
 - Nitrate
 - Reduced Metals (Fe, Mn)
 - Anions (SO4, NO3)
 - Water Hardness

Carus Remedia	ation	Tec	hnolo	gies		
ISCO (In Situ Chemical Oxidation)			BIO (In Situ Biorema	ediation)		
CAP 18® and CAP 18 ME® Anaerobic Bioremediation Products Estimation Spreadsheet Input data into boxes with blue font.						
Enable macros prior to	o entering site par	ameters into th	he spreadsheet			
SITE NAME: Holiday Dry Cleaners PREPARED BY: Input Your Name and Company Here	DATE PREPARED: 4/23/12					
1. Site Model / Treatment Area Volume			Reset Sheet			
1.1. Treatment Area Volume	for development		130 Ft			
Thickness of Treatment Zone	Curtain Length (perpendicular to predominant groundwater flow direction) Thickness of Treatment Zone			130 Ft 20 Ft		
Well Spacing			10 Ft			
1.2. Treatment Area Characteristics						
Soil Characteristics Nominal Soil Type (enter clay, silt, silty sand, sand, or gr	(learn)		Sit			
Nominal soi Type (enter cay, sit, sity sand, sand, or gravel) Sit						
Total Porosity (accept default or enter n) 0.43 (decimal)						
Effective Porosity (accept default or n _i) 0.19 (decimal) Hydraulic Conductivity (accept default or enter K) 10 Fb(day						
Hydraulic Conductivity (accept default of miles C) Hydraulic Conductivity Units Conversion = 3.5E-03 (cm/sec						
Hydraulic Gradient (accept default or enter /)			0.004 FVFt			
CAP188 or CAP18 ME8 Lifespan (accept default or ent Recommended lifetimes: typically 3-5 years for the first		subsequent o	4 yr urtains (see instructions	for more detail)		
				,		
1.3. Calculations Seepage Velocity (V _x)		0.2105 Ft/day	= 76.84	EVvr		
Water Volume Passing in Time $T_{\pi}(V_{\pi})$		51.840 cu. Ft	= 1,135,842			
2. Hydrogen Demand	Concentration	Mass	Stoichiometric Demand	Hydrogen Dem		
2.1. Dissolved Contaminant Demand	(mg/L)	(lbs)	(wt/wt H ₂)	(bs)		
Tetrachloroethene (PCE) Trichloroethene (TCE)	1.8	17.1	20.6	0.8		
cis-1,2-Dichloroethene (DCE)	0.0265	0.3	24.0	0.0		
Vinyl Chloride	0	0.0	31.0	0.0		
	0	0.0	25.4	0.0		
Carbon Tetrachloride	0	0.0	33.1	0.0		
1,1,1-Trichloroethane (TCA)			40.4	0.0		
	ő	0.0	49.1 12.3	0.0		
1,1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor	0	0.0 0.0 0.0	12.3	0.0		
1,1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate	0	0.0	12.3	0.0		
1,1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor	0 0 0	0.0 0.0 0.0 0.0	12.3 0 0	0.0 0 0		
1,1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor	0	0.0 0.0 0.0	12.3	0.0 0 0		
1,1-1-Trichloroethane (TCA) 1,1-0ichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor 2.2. Background Demand Oxygen	0 0 0 Concentration (mg/L) 1.2	0.0 0.0 0.0 Mass (bs) 11.4	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9	0.0 0 Hydrogen Dem (bs)		
1,1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor 2.2. Background Demand Oxygen Nitrate	0 0 0 Concentration (mg/L) 1.2 0.02	0.0 0.0 0.0 0.0 Mass (bs) 11.4 0.2	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9 12.3	0.0 0 Hydrogen Dem: (bs) 1.4 0.0		
1,1-1-Trichloroethane (TCA) 1,1-0ichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor 2.2. Background Demand Oxygen	0 0 0 Concentration (mg/L) 1.2	0.0 0.0 0.0 Mass (bs) 11.4	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9	0.0 0 Hydrogen Dem (bs)		
1,1-1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor 2.2. Background Demand Oxygen Nitrate Manganese Iron Sultate	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 Mass (lbs) 111.4 0.2 0.0 0.0 99.5	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9 12.3 27.3 56.4 11.9	0.0 0 Hydrogen Dem. (bs) 1.4 0.0 0.0 8.4		
1,1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor 2.2. Background Demand Oxygen Nitrate Manganese Iron	0 0 0 Concentration (mg/L) 1.2 0.02 0 0	0.0 0.0 0.0 0.0 Mass (bs) 11.4 0.2 0.0 0.0	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9 12.3 27.3 55.4	0.0 0 Hydrogen Dem. (bs) 1.4 0.0 0.0		
1,1-1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor 2.2. Background Demand Oxygen Nitrate Manganese Iron Sultate	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 Mass (lbs) 111.4 0.2 0.0 0.0 99.5	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9 12.3 27.3 56.4 11.9	0.0 0 Hydrogen Dem. (bs) 1.4 0.0 0.0 8.4		
1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) Parchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor 2.2. Background Demand Oxygen Nitrate Manganese Iron Sultate Water Hardness (as CaCO ₁) 3. TOTAL CAP 18 OR CAP 18 ME DEMAND Dissolved Contaminant Stoichlormetric Hydrogen Demand	0 0 0 Concentration (mgL) 1.2 0.02 0 0 10.5 4210	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9 12.3 27.3 55.4 11.9 68.6	0.0 0 Hydrogen Dem. (bs) 1.4 0.0 0.0 8.4		
1,1-Trichloroethane (TCA) 1,1-Dichloroethane (TCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor User-Supplied Electron Acceptor Oxygen Nitate Manganese iron Sutfate Vieter Hardness (as CaCO ₂) 3. TOTAL CAP 18 OR CAP 18 ME DEMAND Dissolved Contaminant Stoichlometric Hydrogen Demand Background Stoichlormetric Hydrogen Demand	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.3 0 Stoichiometric Demand (WWH H_) 12.3 27.3 56.4 11.9 66.6	0.0 0 Hydrogen Dem. (bs) 1.4 0.0 0.0 8.4		
1,1-Trichloroethane (TCA) 1,1-Dichloroethane (TCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor Z.2. Background Demand Oxygen Nitrate Marganese Iron Sultate Water Hardness (as CaCO ₂) S. TOTAL CAP 18 OR CAP 18 ME DEMAND Dissolved Contaminant Stolchlormetic Hydrogen Demand Background Stolchlormetic Hydrogen Demand Total Stolchormetic Hydrogen Demand Total Stolchormetic Hydrogen Demand	0 0 0 0 0 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.3 0 0 Stoichiometric Demand (wt/wt H ₂) 7.9 12.3 27.3 55.4 11.9 69.6	0.0 0 Hydrogen Dem. (bs) 1.4 0.0 0.0 8.4		
1,1-Trichloroethane (TCA) 1,1-Dichloroethane (TCA) Perchlorate User-Supplied Electron Acceptor User-Supplied Electron Acceptor User-Supplied Electron Acceptor Oxygen Nitate Manganese iron Sutfate Vieter Hardness (as CaCO ₂) 3. TOTAL CAP 18 OR CAP 18 ME DEMAND Dissolved Contaminant Stoichlometric Hydrogen Demand Background Stoichlormetric Hydrogen Demand	0 0 0 Concentration (mgl.) 1.2 0 0 0 10.5 4210	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.3 0 Stoichiometric Demand (wtwt H_) 7.9 12.3 27.3 55.4 11.9 68.6	0.0 0 Hydrogen Dem. (bs) 1.4 0.0 0.0 8.4		

Software Version 2 (beta) © 2006 Carus Corporation




Distribution of CAP 18 and CAP 18 ME in Soil Pores


Microscopic view of entrapped oil in soil

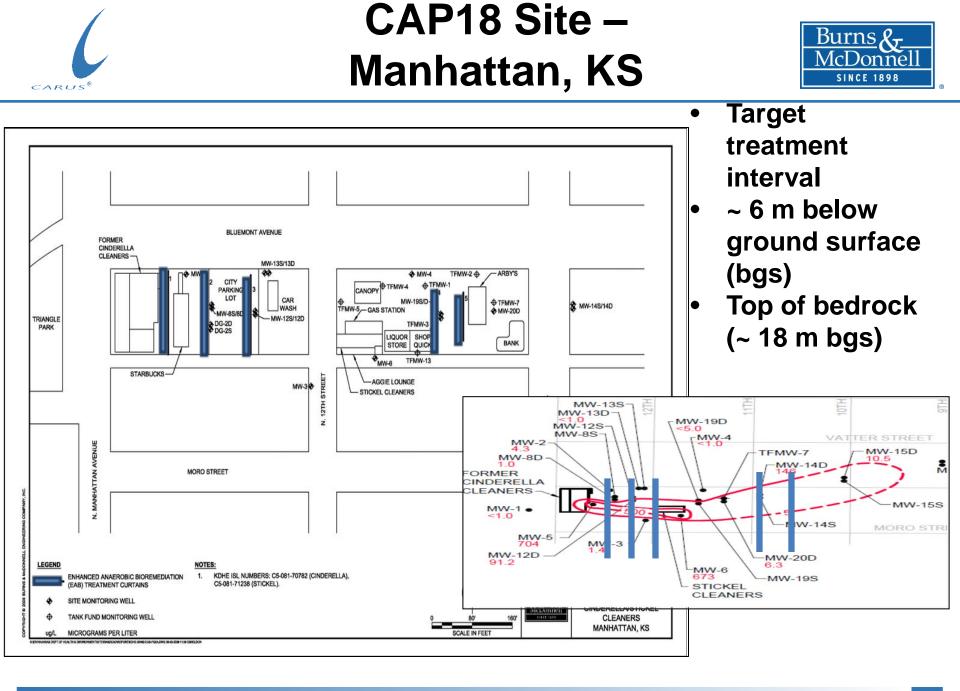
Substrate Injection 2.5 mL/min

 The sum of viscous and interfacial tension prevent upward migration of the oil droplets

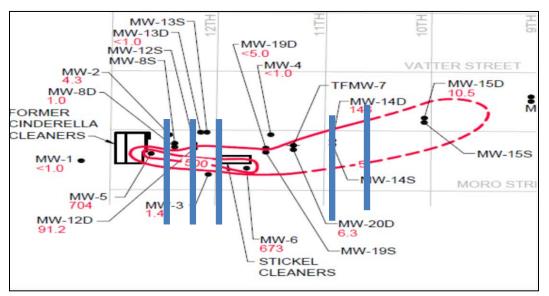


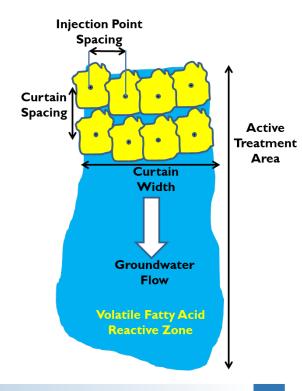
CAP 18 Case Study

Former Cinderella-Stickel Dry Cleaners Manhattan, KS


- Groundwater contamination first discovered in 1986
- Baseline groundwater sampling (July 2009)
 - PCE 11,000 ug/L, TCE 1,770 ug/L, cDCE 700 ug/L, and VC 957 ug/L
 - Comingled plume extends1200 m east-northeast towards the City of Manhattan public wells #12 and #13

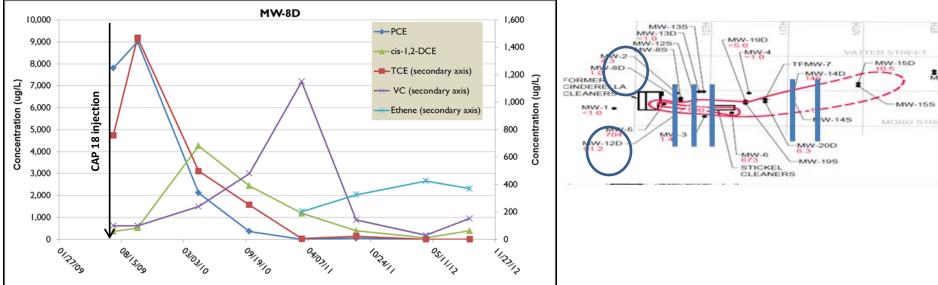
CAP18 Site Design Manhattan, KS


- Burns & McDonnell selected by Kansas Department of Health and Environment to remediate sites with enhanced anaerobic bioremediation
- Seepage velocity used in CAP 18 dosage calculations with estimated velocity ranges for individual aquifer depth intervals:
 - 6-7.6 m bgs: 5.2 m/year (Shallow Unit-Fine-grained Clay)
 - > 10.7-13.7 m bgs: 29.6 m/year (Intermediate Unit-Silty Sand)
 - > 13.7-18.3 m bgs: 69.2 m/year (Deep Unit-Sandy Alluvium)
- Other design parameters:
 - Average COC concentrations
 - Background demand


CAP18 Site – Manhattan, KS

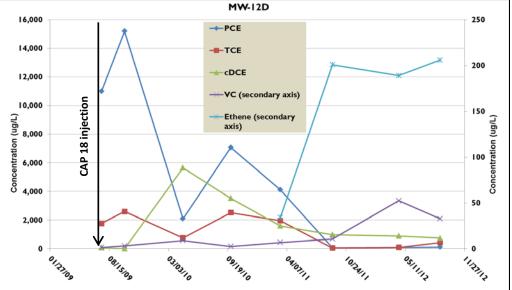
- July 2009, five CAP 18 distribution curtains oriented perpendicular to groundwater flow
 - Direct-push injection
 - Each curtain spaced 5 meters apart and spanned width of groundwater plume
 - Total linear footage of 210 meters for 5 injection curtains

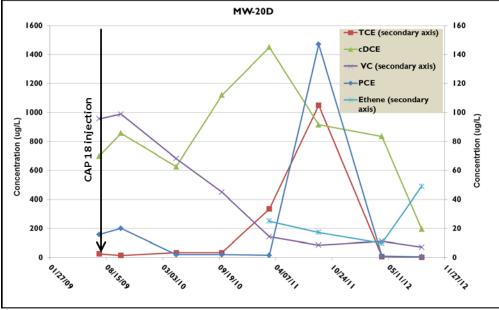
CAP 18 Site – Manhattan, KS

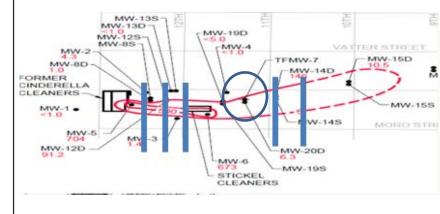

- Each point injected at 1.5 meter intervals with varying CAP 18 injection volumes depending on seepage velocity
- Amounts for each injection interval:
 - > 6-11 m bgs: approximately 4 liters per 1-1.5-m interval
 - > 11-14 m bgs: approximately 30 liters per 1-1.5-m interval
 - > 14-18 m bgs: approximately 132 liters per 1-1.5-m interval
 - > 18 m bgs represents top of bedrock in this area
- Approximately 1580 kg (636 liters) injected per point
- Total of ~ 37,500 liters of CAP 18 injected during the field implementation

CAP 18 Site – Manhattan, KS

- Post-injection groundwater monitoring conducted on semi-annual basis from 2009 through 2013
- Groundwater sampling conducted at eight monitoring wells to provide performance assessment data
- Performance monitoring sampling included:
 - > Temperature
 - ≻ pH
 - Specific conductivity
 - Oxidation-reduction potential (ORP)
 - Total organic carbon (TOC)
 - Dissolved oxygen
 - Volatile organic compounds (PCE, TCE, DCE, VC)
 - Methane/ethane/ethene


Down-Gradient Monitoring Well VOC Data

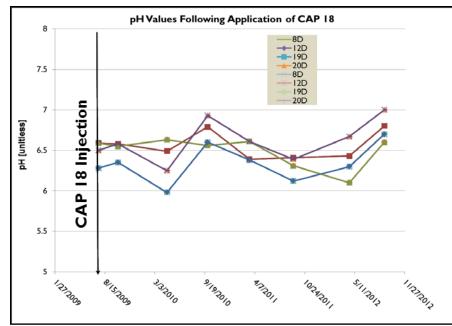

3+ years of biodegradation activity


CARUS

- PCE and TCE concentrations increased to 9000 ug/L then decreased rapidly to a low of < 2.0 ug/L (September 2012)
- cis-1,2-DCE and VC increases as expected, due to PCE and TCE dechlorination
- Ethene analysis began March 2011
- MW-8D ethene concentrations increased from March 2011 through April 2012 confirming complete dechlorination of targeted CVOCs

Down-Gradient McDonn Monitoring Well VOC Data

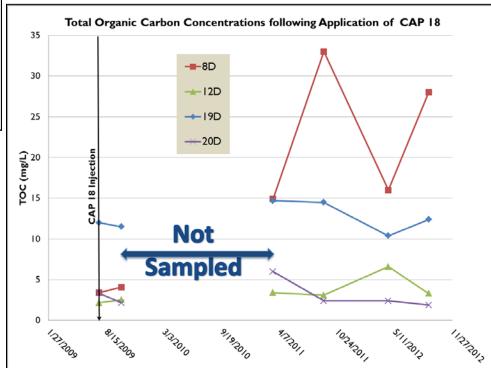
<u>3+ years of biodegradation activity</u>


- PCE and TCE concentrations decreased following CAP 18 injection
- Followed by a spike during October 2011 sampling event
- Declining to consistently low levels

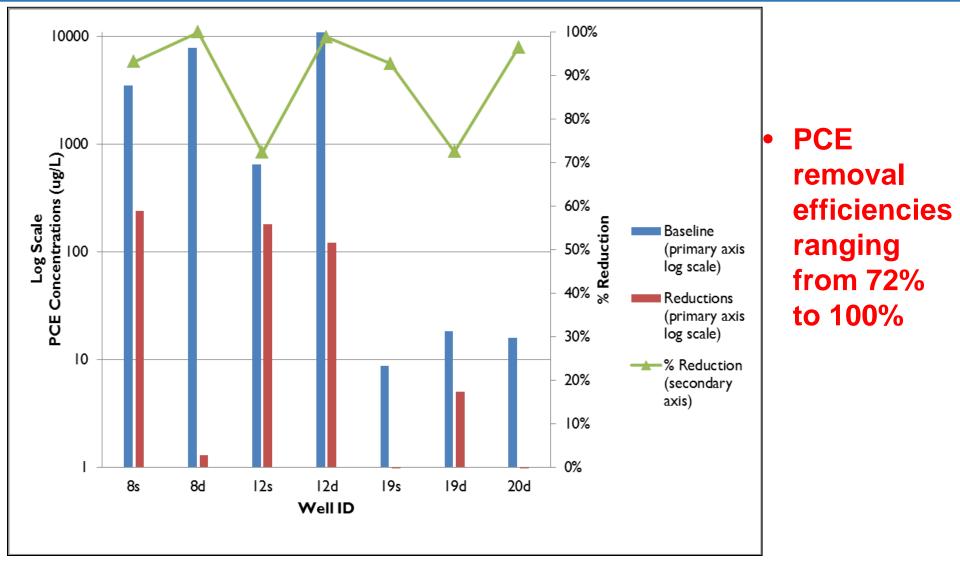
- Cis-1,2-DCE concentrations increased 600 to > 1400 ug/L, followed by a continued and gradual decline
- Ethene detections continue to confirm that complete dechlorination is ongoing

CARUS

Down-Gradient pH and TOC Data

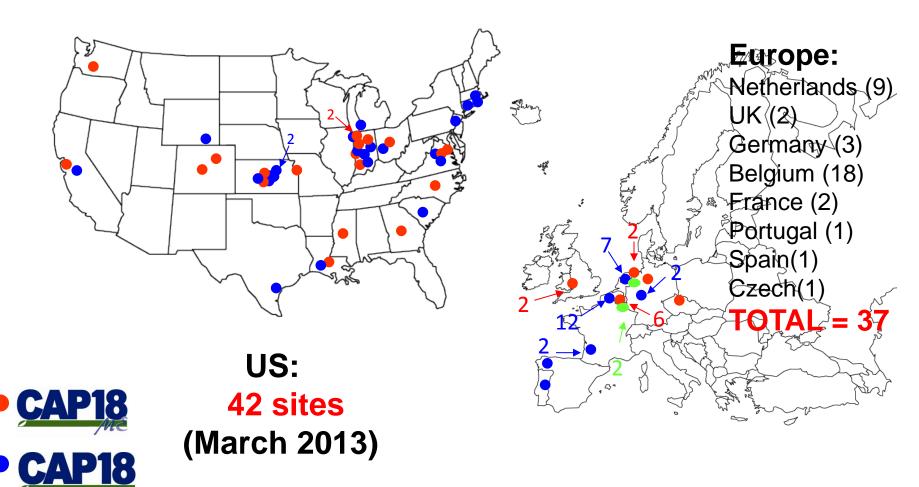


CARUS


- Following small initial pH decreases near neutral values ranging from 6.6 to 7 (September 2012)
- Promotes sustained microbial activity

 TOC data provides information on organic carbon transport in groundwater downgradient of CAP 18 curtains

Performance Assessment



Burns &

SINCE 1898

Completed Sites

- Significant VOC reductions <u>3+ years</u> after single application
- TOC data indicates substrate still releasing
- Increased substrate utilization demonstrates high <u>TOC</u> <u>concentrations</u> unnecessary to support reductive dechlorination
- Large pH shift was not observed during the barrier lifetime, despite degrading >12,000 ug/L of PCE and <u>eliminates co-</u> <u>injection of costly buffers</u>
- Complete anaerobic reductive dechlorination of PCE to ethene with a single CAP 18 application <u>almost 18 m</u> from the curtains

Questions?

Friday 9:25-9:55 Shaughnessy Field Application of Passive Treatment of Chlorinated Solvents using Novel Sustained-Release Oxidant Technologies Grant Walsom, XCG; Pamela Dugan Carus

Properties of CAP 18 and CAP 18 ME

Compound	Interfacial Tension (dynes/cm)	Specific Gravity
CAP18	26.6 ^A	0.93 g/mL
CAP18 ME	22.7 ^A	0.93 g/mL
BTEX	12.3 ^A	0.74 g/mL

^AMeasured using DuNuoy Ring Tensiometer at NAPL-water interface

Compound	Viscosity (cP)
Polylactates	20,000
Sodium Lactate (60%)	100 @ 68F
CAP18	55.1 ^B
CAP18 ME	6.63 ^B
BTEX	0.4 ^c

^BMeasured using Brookfield Viscometer at 10 s⁻¹

^c"Remediation Hydraulics", Payne, Quinnan, Potter, 2007