Assessment of the Mobility of Heavy Metals in the Unsaturated Zone at Small Arms Firing Ranges

Sylvie Brochu¹, Mathieu Laporte-Saumure¹, Louis-Julien Roy¹ and Richard Martel²

¹: DRDC ²: INRS

REMTEC 2013, Banff (BC) October 14-16, 2013

NOTICE

(U) This document has been reviewed and DOES NOT CONTAIN controlled goods technical data.

Overview

- Background
- Objective
- Instrumentation/Methods for the Vadose Zone
 - Lysimeters
 - Synthetic Precipitation Leaching Procedure
 - Sequential Extractions
- Results
 - Soils
 - Vadose zone
 - Groundwater
- Summary
- Conclusions

Background

Projectiles : 5.56-mm and 7.62-mm

- Core:
 - Pb-Sb 98/2 (5.56 mm) or 90/10 (7.62 mmm)
 - 95% of the bullet mass
- Jacket: Cu-Zn 90/10 (5%)
- Pb, Cu, Sb and Zn in the soils of stop berms above CCME industrial criteria
- May migrate vertically in the vadose zone, and eventually in the water table

Objective

- Soil of stop berms would have to be remediated frequently (every month or so) according to CCME industrial soil criteria
- To perform appropriate risk assessment, information is needed on the mobility of the contaminants in the vadose zone and in groundwater in order for the restoration not to be performed :
 - Too often when strictly relying on industrial criteria
 - Too late when contamination has reached groundwater

Methods

- Metal (Pb, Cu, Sb, and Zn) concentrations in stop berms surface and sub-surface soils
- Leaching potential of the sub-surface soil contaminants
 - Synthetic Precipitation Leaching Procedure
 - Sequential Extraction
- Metal concentrations in situ in the vadose zone
 - Gravimetric lysimeters (GL)
 - Suction cup lysimeters (SL)
- Metal concentrations in groundwater
 - Monitoring wells

Soil Sampling

- Concentrations of heavy metals in the soils on the stop berm of 2 Small Arms Firing Range (SAFR)
 - Systematic multi-increment sampling strategy (SMISS) of the surface soils
 - Depth profiling

RDDC

- Total extraction procedure (e.g., USEPA method 3052)
- Analysis by ICP-MS (e.g., USEPA method 6020A)

Synthetic Precipitation Leaching Procedures (SPLP)

SPLP tests (EPA method 1312)

- Collection of 0-15 and 0-30 cm depth samples using SMISS
- SPLP extractant
 - H₂SO₄/HNO₃ 60/40
 - ∎ pH 4.20
- Soil/extractant 1/20
- 18 hours
- Rotary mixer
- Resulting solution were filtered and analyzed for Cu, Pb, Sb, and Zn by ICP-MS
- Results are compared with Health Canada Drinking Water Criteria (HCDWC)

Sequential Extractions (Tessier protocol)

Fraction of metals:

- Exchangeable
- Linked to carbonates
- Linked to iron and manganese oxides
- Linked to organic matter
- Totally insoluble

- Used in the mining industry to perform environmental risk assessment
- Risk is considered high if fractions (1) and (2) are large
 Ongoing

Gravimetric Lysimeters (GL)

- Disturb considerably the surrounding area
- Can be installed easily during range construction
- Max depth ~ 2 m
- Measure the <u>total</u> amount of metals leaching
- Adequate for all metals

Succion Cup Lysimeters (SL)

- Nylon, PVC or PTFE
- Easy to install on operating stop butts
- Minimal disturbance of soil
- Any depth (PTFE or PVC)
- 2 m bgs (nylon)

RDDC

- Measure the <u>dissolved</u> metal concentration
- Not adequate for Sb and Cu
- Only nylon SL for Pb (any pH) and Zn (pH 6.5 and 8.5)

Tension tube

Pore Water and Groundwater Sampling

Pore water sampling at various depths

- GL Sites 1 and 2
 - PTFE cylinders (pierced at the bottom; 27-cm diameter, 32-cm high) connected to a LDPE 10-L sampling bottle via a PTFE tube
 - Site 1: 0.75 m and 1.5 m bgs
 - Site 2: 0.3 m, 0.55 m, 0.75 m, 1.5 m bgs
 - Sampling bottles were located in an access well
- SL Site 1
 - PTFE, 30-cm length, horizontal inclination 67°
 - **1**, 1.5, 2, 3, 4.5, and 6 m bgs
- GL and SL were sampled ~once a month on an over 5-y, and 3-y period, respectively (only years 2010 and 2011 are reported here)

Groundwater sampling

Observation wells were located in the immediate vicinity of the stop berms

Results – Soil Concentrations

- Surface soil concentrations of Pb, Cu, Sb and Zn above industrial CCME criteria
- Soil concentrations of heavy metals fall below industrial criteria at depth > 30 cm

Metal Concentration in the Vadose Zone

Pb and Sb > DW criteria detected in GL at depth of 1.5 m

Site 1_Pb and Sb average concentrations in gravimetric lysimeters (GL) pore water samples in 2010 and 2011

Vadose Zone

Pb and Sb e DW criteria detected in SL at depth of 4.5 m

Site 1_Pb and Sb average concentrations in succion lysimeters (SL) pore water samples in 2010 and 2011

Vadose Zone

Synthetic Precipitation Leaching Procedures (SPLP)

Leaching of contaminants from soils exposed to rain at pH 4.2 (EPA 1312)

SPLP vs GL

Sb and Pb are the most mobile in the vadose zone [Sb] and [Pb] in SPLP overestimates those of GL

Groundwater

Observation wells	Cu	Pb	Sb	Zn
	ug/L	ug/L	ug/L	ug/L
PO-242-8m 16/4/9	1,1	2,5	2	1,3
PO-243-7m 16/4/9	2	5,3	1,5	1
PO-249-9m 16/4/9	1,4	2	1,5	1
PO-242-8m 5/9/9	1,1	1,9	1	1
PO-243-7m 5/9/9	2	12,4	2,1	2,5
PO-249-9m 5/9/9	2,6	9,6	2,1	2,3
PO-242-7m 9/7/11	< 0,9	< 3	< 8	1,5
PO-243-7m 17/7/11	0,8	3,5	0,1	1,2
PO-249-9m 9/7/11	< 0,9	< 3	< 8	2,4

Summary

Soils:

- Pb, Cu, Sb and Zn exceed CCME industrial criteria
- Mainly concentrated 30 cm bgs

Vadose zone (GL)

- [Zn] and [Cu] < HCDWC</p>
- [Sb] and [Pb] > HCDWC at 1.5 m bgs
- [Sb] and [Pb] in SPLP overestimates those of GL at 1.5 m
- [Sb] > HCDWC at 4.5 m bgs (SL)
- Sb still detected at 6-m bgs (SL)
- Pb still detected at 4.5 m bgs (SL)

Groundwater: seldom detected at 7 to 9 m bgs

Conclusions

CIRDDC

Migration of Pb, Sb, Cu and Zn bgs

- Cu and Zn not of concern
- Sb and Pb are the most mobile
- Important dilution factor when the contaminants reach the groundwater
- Surface soil concentrations of Pb, Cu, Sb and Zn:
 - Not an appropriate assessment of the environmental risk
 - CCME prescribes a specific site assessment
 - Costly and time consuming
- SPLP: Early warning of a potential contamination of the water table that has to be carefully interpreted
- A monitoring of the vadose zone should be done in order to avoid any metal pollution of water table, particularly for shallow groundwater

DEFENCE

DÉFENSE

6