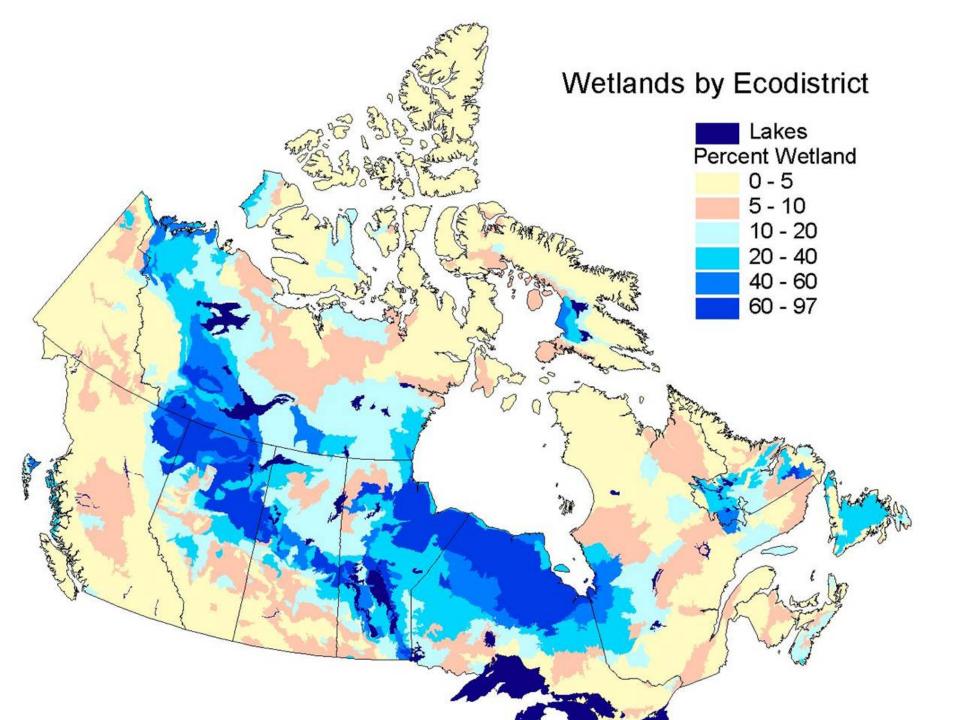

Evaluation of Alternative Approaches for Managing Risks of Salt Releases at Wetland Sites

Doug Bright, Ph.D., Practice Lead – Environmental Risk Assessment Don Wood, Director, Development – AB, NWT, SK

RemTech 2013

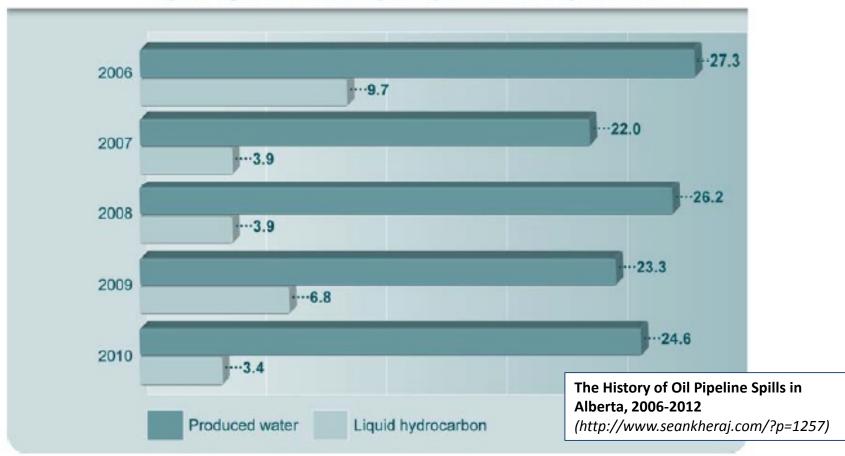







Square pegs and round holes...

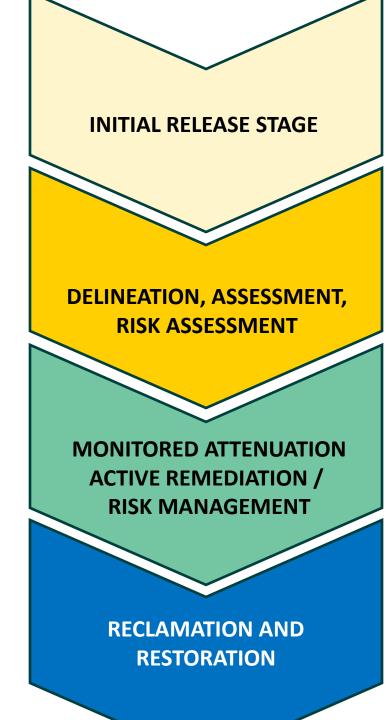
# Outline


- **1.** Background and Objectives
- 2. Canadian Tier 1 Risk-Based Thresholds of Effects for Salts and Applicability to Boreal Wetlands
- **3.** Equivalency of Different Salt Contamination Measures
- 4. Next Steps and Outstanding Issues





# **1. Background and Objectives**

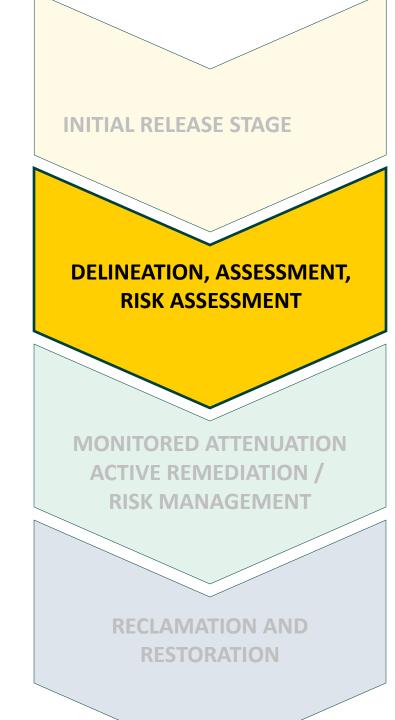

Figure 8. Reported volumes of produced water and liquid hydrocarbon spills (1000s of m<sup>3</sup>), 2006-2010



# Five simple rules for managing salt releases to wetlands

**1.** Minimize landscape disturbance!! 2. Know the hydrological and vegetative characteristics of the spill/release site. 3. Stop and ask - What am I concerned about? 4. Understand the relevant contaminant fate processes 5. The wetland vegetation response will guide us

home !




Maximize recovery of contaminant mass in immediate release area (source control), while minimizing other disturbances detrimental to wetland restoration goals.

Understand what ecological receptors are at risk. Establish the short-term zone of impact (impacted baseline)

Understand the expected ecosystem trajectory relative to reclamation goals. Evaluate the pros and cons of more active versus more passive approaches.

Confirm that contaminant-related barriers to wetland succession and function are no longer present.



**TIER 1: AEnv, CCME, BC CSR** 

TIER 2: Altered Predictions of Exposure Potential from Source Term Based on Fate Modelling – *NOT AVAILABLE* 

TIER 3: Detailed Site-specific Ecological Risk Assessment

# Objectives

Discuss challenges associated with use of existing Tier 1 environmental quality guidelines

Provide an overview of emerging approaches to expedite assessment and remediation of salt rele to boreal wetlands

# 2. Canadian Tier 1 Risk-Based Thresholds of Effects for Salts and Applicability to Boreal Wetlands

#### SALT CONTAMINATION ASSESSMENT

#### & REMEDIATION GUIDELINES



MAY 2001

## Alberta Salt Soil Quality Guidelines for Unrestricted Land Use

#### Table 2.2Soil Quality Guidelines for Unrestricted Land Use

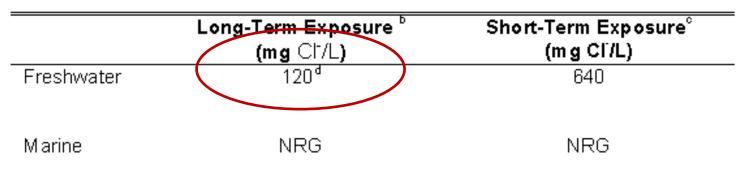
| Parameter |                    | Rating Categories |        |         |                    |  |  |
|-----------|--------------------|-------------------|--------|---------|--------------------|--|--|
|           |                    | Good              | Fair   | Poor    | Unsuitable         |  |  |
| Topsoil   | EC dS/m (salinity) | <2ª               | 2 to 4 | 4 to 8  | >8                 |  |  |
| ropson    | SAR (sodicity)     | <4                | 4 to 8 | 8 to 12 | > 1 2 <sup>b</sup> |  |  |
| Subsoil   | EC dS/m (salinity) | <3                | 3 to 5 | 5 to 10 | >10                |  |  |
|           | SAR (sodicity)     | <4                | 4 to 8 | 8 to 12 | >12                |  |  |

a Some plants are sensitive to salts at EC < 2 dS/m (e.g., flax, clover, beans, wheat, peas, some garden crops).

b Material characterized by SAR of 12 to 20 may be rated as poor if texture is sandy loam or coarser and saturation % is less than 100.

c Topsoil: surface A horizons on the control area, or the equivalent surface soil on the reclaimed site. Subsoil: B and C horizons and the upper portion of the parent material.






Canadian Council Le Conseil canadian of Ministers des ministres of the Environment de l'environnement

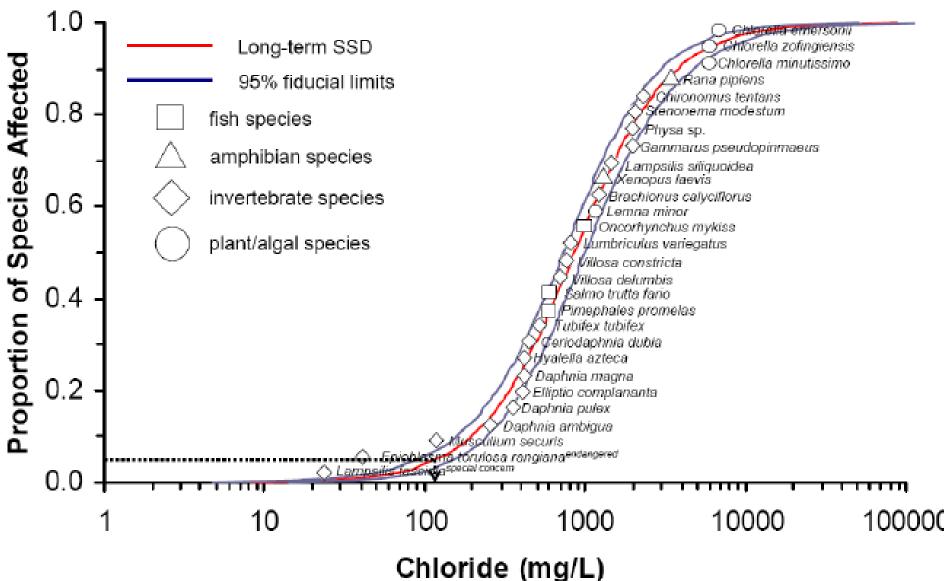
Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life

**CHLORIDE ION** 

## Canadian Water Quality Guideline for the chloride ion<sup>a</sup> for the protection of aquatic life



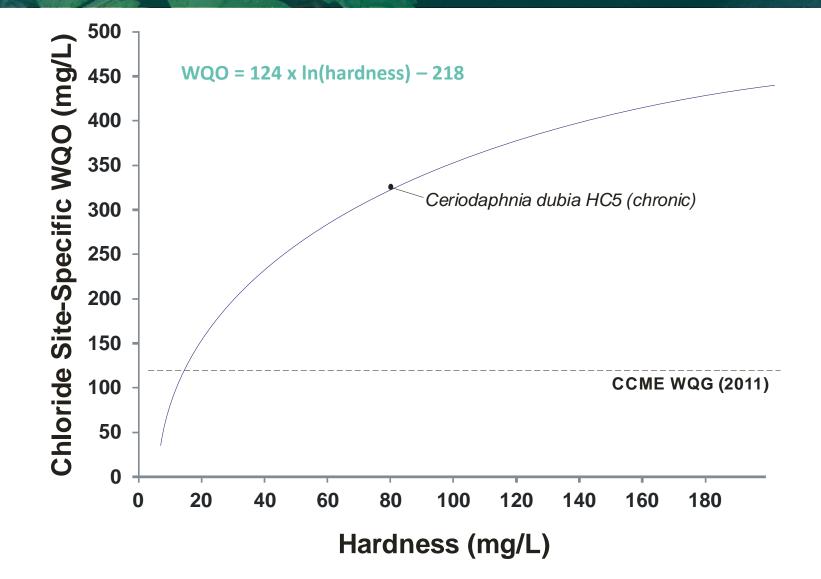
<sup>a</sup>Derived from toxicity tests utilizing both CaCl<sub>2</sub> and NaCl salts


<sup>b</sup>Derived with mostly no- and some low-effect data and are intended to protect against negative effects to aquatic ecosystem structure and function during indefinite exposures (e.g. abide by the guiding principle as per CCME 2007).

<sup>c</sup>Derived with severe-effects data (such as lethality) and are not intended to protect all components of aquatic ecosystem structure and function but rather to protect most species against lethality during severe but transient events (e.g. inappropriate application or disposal of the substance of concern).

<sup>d</sup> The long-term CWQG may not be protective of certain species of endangered and special concern freshwater mussels (as designated by the Committee on the Status of Endangered Wildlife in Canada, or COSEWIC). This specifically applies to two species; the wavy-rayed lampmussel (*Lampsilis fasciola*) (COSEWIC, 2010a) and the northern riffleshell mussel (*Epioblasma torulosa rangiana*) (COSEWIC, 2010b) (table below). The wavy-rayed lampmussel is indigenous to the lower Great Lakes and associated tributaries, specifically western Lake Erie, the Detroit River, Lake St. Clair and several southwestern Ontario streams. The northern riffleshell mussel is indigenous to the Ausable, Grand, Sydenham and Thames Rivers in Ontario, as well as the Lake St. Clair delta. <u>Discussion with provincial regulators should occur if there is a need to develop more protective site specific values.</u>

NRG = no recommended guideline


### Species Sensitivity Distribution (long term exposures) – CCME, 2011



#### Table 9.11 Long-term no effect and low effect concentrations for species exposed to chloride in freshwater.

| Rank | Scientific Name                                 | Common<br>Name           | Endpoint                                     | Effective<br>Concentration<br>(mg Cl'/L) | Data<br>Quality | Hazen<br>Plotting<br>Position | Reference                                         |
|------|-------------------------------------------------|--------------------------|----------------------------------------------|------------------------------------------|-----------------|-------------------------------|---------------------------------------------------|
| 1    | Lampsilis<br>fasciola*                          | Wavy-rayed<br>Lampmussel | 24h EC10<br>(glochidia<br>survival)          | 24                                       | s               | 0.02                          | Bringolf et al.,<br>2007                          |
| 2    | Epioblasma<br>torulosa<br>rangiana <sup>b</sup> | Northern<br>Riffle Shell | 24h EC10<br>(glochidia<br>survival)          | 42                                       | s               | 0.05                          | Gillis 2010                                       |
| 3    | Musculium<br>securis                            | Fingernail<br>clarn      | 60-80d LOEC<br>(reduced<br>natality)         | 121                                      | s               | 0.09                          | Mackie 1978                                       |
| 4    | Daphnia<br>ambigua                              | Water flea               | 10-d EC10<br>(mortality and<br>reproduction) | 259                                      | s               | 0.13                          | Harmon et al.,<br>2003                            |
| 5    | Daphnia pulex                                   | Water flea               | 21-d IC10<br>(reproduction)                  | 368                                      | s               | 0.16                          | Birge et al., 1985<br>In: Elphick et al.,<br>2010 |
| 6    | Elliptio<br>complanata                          | Freshwater<br>mussel     | 24-h EC10<br>(glochidia<br>survival)         | 406                                      | s               | 0.20                          | Bringolf et al.,<br>2007                          |
| 7    | Daphnia magna                                   | Water flea               | 21-d EC25<br>(reproduction)                  | 421                                      | Ρ               | 0.23                          | Elphick et al.,<br>2011                           |
| 8    | Hyalella azteca                                 | Amphipod                 | 28-d EC25<br>(growth, dry<br>weight)         | 421                                      | s               | 0.27                          | Bartlett 2009<br>(unpublished)                    |
| 9    | Ceriodaphnia<br>dubia                           | Water flea               | 7-d IC25<br>(reproduction)                   | 454                                      | Р               | 0.30                          | Elphick <i>et al.</i> ,<br>2011                   |
| 10   | Tubifex tubifex                                 | Oligochaete              | 28-d IC10                                    | 519                                      | Р               | 0.34                          | Elphick et al.,                                   |

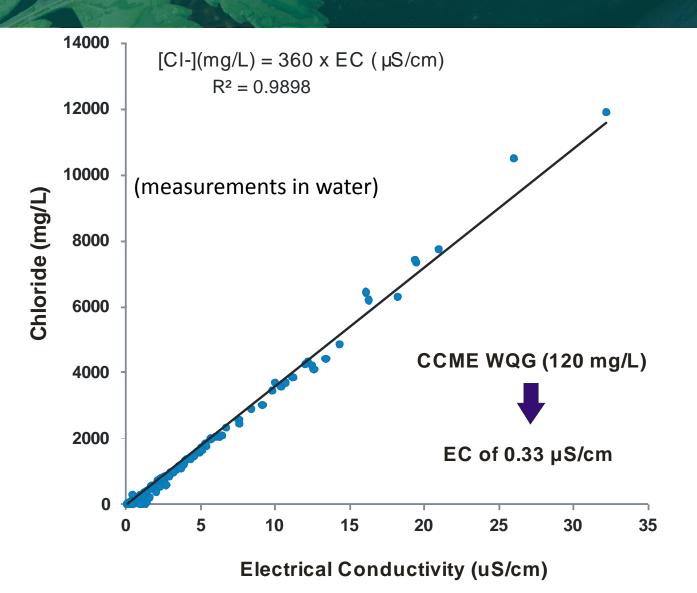
#### Choride toxicity threshold is hardness dependent (Ekati Minesite Site-specific WQO based on data by Elphick 2010 (in CCME 2011)



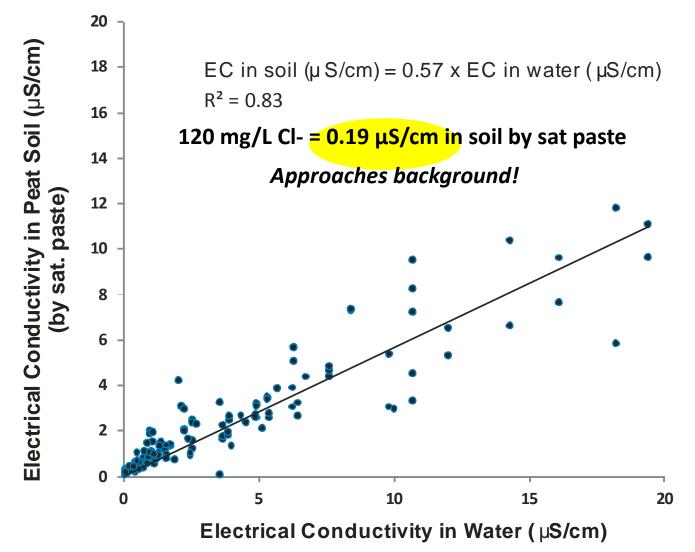
### British Columbia Contaminated Sites Regulation – Soil Matrix Standards for Chloride Ion (mg/kg as sat. paste)

|                                                        | Agricultural | Urban<br>Parkland | Residential  | Commercial   | Industrial   |  |  |
|--------------------------------------------------------|--------------|-------------------|--------------|--------------|--------------|--|--|
| HUMAN HEALTH PROTECTION                                |              |                   |              |              |              |  |  |
| Intake of contaminated soil                            | > 1 000 mg/g | > 1 000 mg/g      | > 1 000 mg/g | > 1 000 mg/g | > 1 000 mg/g |  |  |
| Groundwater used for drinking water                    | 90           | 90                | 90           | 90           | 90           |  |  |
| ENVIRONMENTAL PROTECTION                               |              |                   |              |              |              |  |  |
| Toxicity to soil invertebrates and plants              | 350          | 350               | 350          | 2,500        | 2,500        |  |  |
| Livestock ingesting soil and fodder                    | NS           |                   |              |              |              |  |  |
| Major microbial functional impairment                  | NS           |                   |              |              |              |  |  |
| Groundwater flow to surface water used by aquatic life | 550          | 550               | 550          | 550          | 550          |  |  |
| Groundwater used for livestock watering                | 200          |                   |              |              |              |  |  |
| Groundwater used for irrigation                        | 35           | 35                | 35           |              |              |  |  |

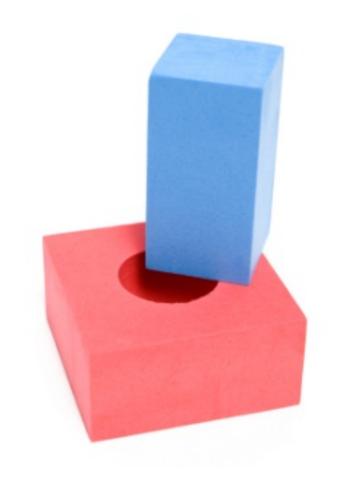



#### The Issues (with thanks to Mark Hugdahl ALS)

- Salt Stds were derived for Mineral Soils, not peaty and hydric soils.
  - Physical properties of minerals soils are very different from peats.
- Sat. Paste Methodology: Conversion from mg/L pore water concentrations to mg/kg differs radically between Mineral Soils and Organic Soils.
  - Difference in conversion factors is about 20x!
- Toxic effects of Na & Cl correlate better with mg/L concentrations than mg/kg.
  - Na & Cl salts are highly soluble, tend to reside in soil pore waters in the dissolved state.
  - This differs from most metals & organics, which tend to sorb to soils.



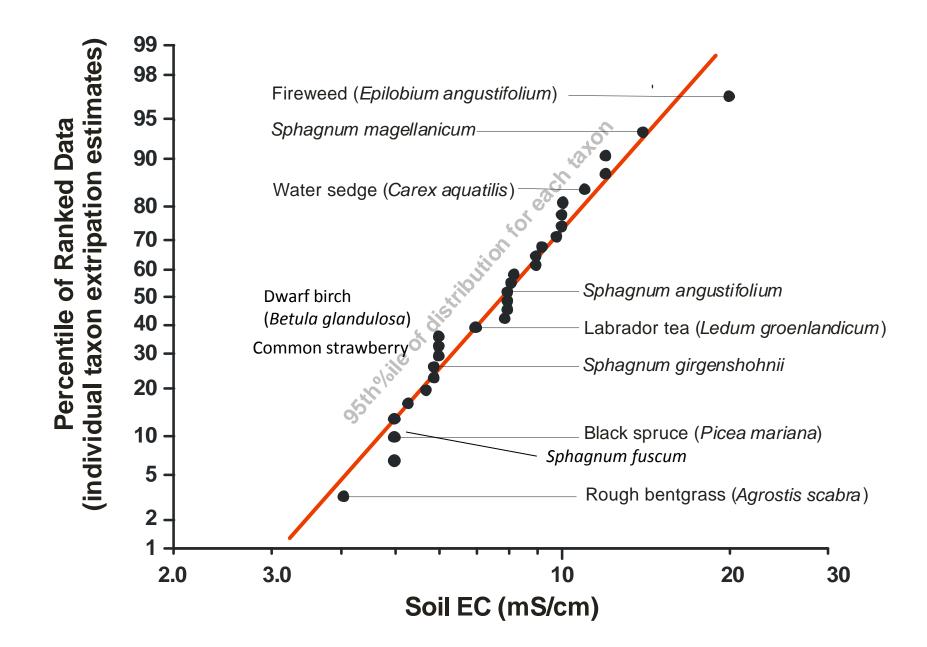

- Soil Invertebrate Tox Tests used for derivations used only Mineral Soils (Addison and Bright, 2002)
  - Used for "Toxicity to Soil Invertebrates and Plants" Standards.
    - Sodium 200 mg/kg, & Chloride 350 mg/kg
  - Soils used for tox tests had only 10-30% moisture.
- BC CSST Standard Derivations assume Fraser River Sand for Groundwater Transport Model
  - Used for all groundwater pathway standards, e.g. "GW Flow to Surface Water used by Aquatic Life" Standard (Chloride, 550mg/kg).
  - Fraser River Sand is vastly different from peat...


#### **3. Equivalency of Different Salt Contamination Measures**



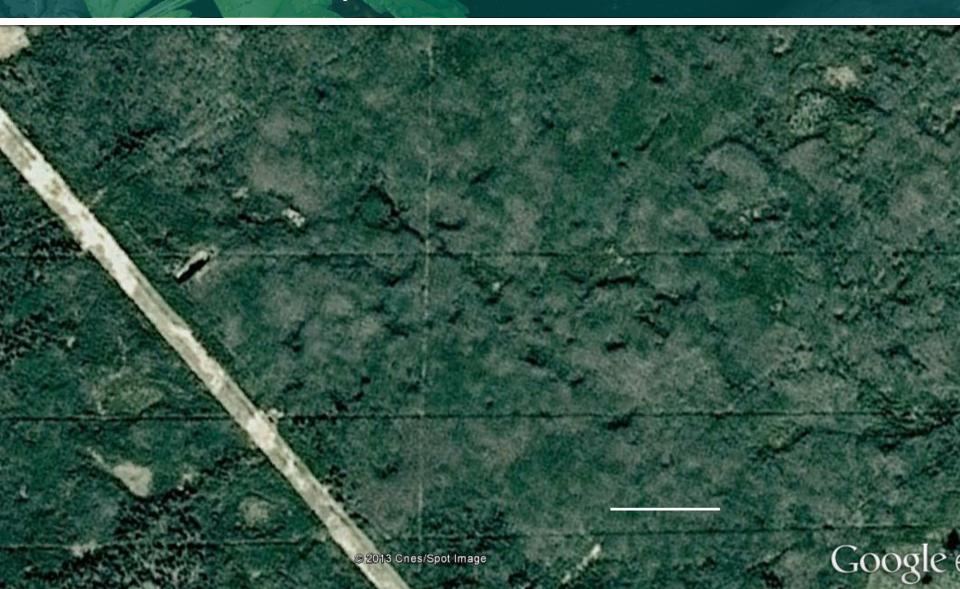









Square pegs and round holes...


## 4. Next Steps and Outstanding Issues

- Development of wetland specific risk-based thresholds of effects levels (chloride and EC)
- CAPP initiative to develop freshwater life chloride water quality guidelines that are hardness adjusted
- Development of BC Contaminated Sites "Soil Matrix Standards" based on direct measurement of salinity in soil solution



New information on relative sensitivity of different taxa is directly relevant for assessing degree of site impairment and recovery

## CAPP Initiative to Develop Hardnessspecific Cl<sup>-</sup> WQG



British Columbia - Development of Alternative Approaches Under the BC Contaminated Site Regulation for the Assessment and Remediation of Produced Water (Sodium and Chloride) Releases at Boreal Wetland Sites

## Thank you. Questions?

Doug Bright, PhD, R.P.Bio. Environmental Risk Assessor <u>dbright@hemmera.com</u>

Don Wood Director, Development – AB, NWT, SK <u>dwood@hemmera.com</u>

Hemmera.com

# **C**I HEMMERA