

Soil and Materials Engineering Environmental Engineering Building Science Supply Chain Quality

ediation

technologie**s**ymposium

How to Minimize Cost for a Remote Clean-up and be Sustainable?

Presented by:

Guillaume Bédard V-P Business Development Environment

Site Description

- Located in northern Quebec, in the James Bay area
- Telecommunication tower
- \succ Site operation since the 1980s
- > Site only accessible by helicopter

NIKAMO/P315

LG4/A

LG4/AERO

MARVIN/T

PO

RADISSO/P735

DESAULN/T

YASINSK/T CASTOR/T

SAKAMI/T

LG-2 T

OPINACA/T

OPINACA/EVACU

EASTMAI/T

EASTMAI/EVACU

CHISSIB/REF

LG3/AERO

LG3/T

CHABRIL/T

GUYER/T LEMOYNE/P735

BONFAIT/REF

TREFARTIT

AVIRON/T

NEMISCA/REF NEMISCA/P735

Data SIO, NOAA, U.S. Navy, NGA, GEBCO_LON/T © 2010 Tele Atlas Image © 2010 Terra Metrics © 2010 Google 52°36'28.14" N 75°51'15.56" O

Google

Altitude 424.72 km

technologiesymposium

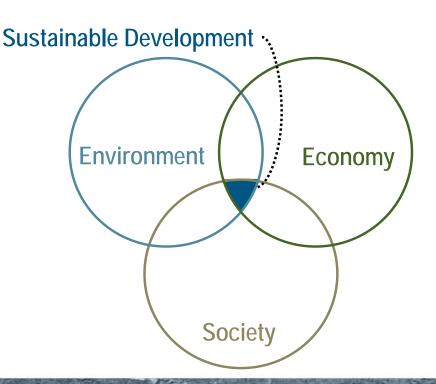
EASTMAI/P69

2 Applicable Legislation

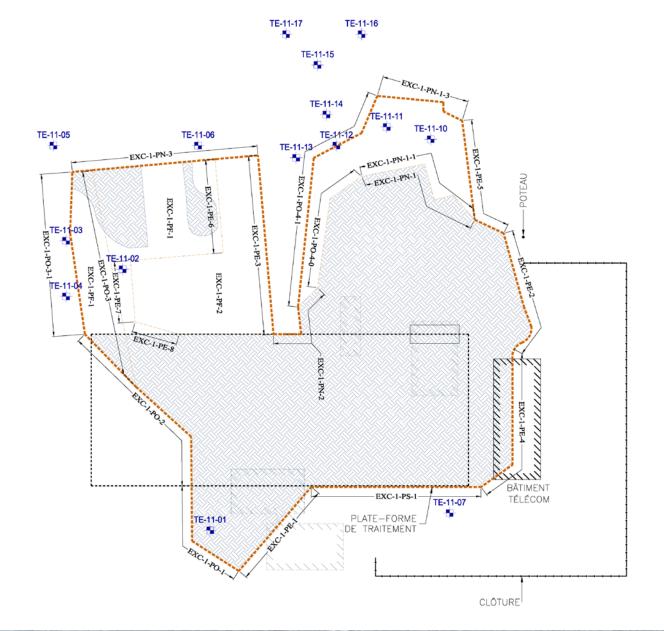
MDDEP's Soil Protection and Contaminated Sites Rehabilitation Policy – Level B of the generic criteria

Paramèters	Units	MDDEP Generic Criteria			Alberta Tier I Guidelines (Coarse)		
		A (Residential)	B (Commercial)	C (Industrail)	Residential	Commercial	Industrial
HP C ₁₀ - C ₅₀	mg/kg	300	700	3,500	-	-	-
F1	mg/kg	-	-	-	24	270	270
F2	mg/kg	-	-	-	130	260	260
F3	mg/kg	-	-	-	300	1700	1700
F4	mg/kg	-	-	-	2800	3300	3300
Benzene	mg/kg	0.1	0.5	5	0.073	0.078	0.078
Toluene	mg/kg	0.2	3	30	0.49	0.49	0.49
Ethylbenzene	mg/kg	0.2	5	50	0.21	0.21	0.21
Xylenes	mg/kg	0.2	5	50	12	28	28

Soil Remediation Guidelines


3 Site Environmental Background

- Removal of a diesel AST and associated piping network in 2002
- > Installation of a passive treatment system (7 years)
- > Additional characterization were completed in 2009
- Estimated between 400 and 500 m³ of impacted soil
- Selection of a remediation technology that would be more aggressive (2 years timeframe)



3 Site Environmental Background (cont'd)

> and had to comply with all aspects of sustainability

LIMITE D'EXCANATION

÷ LIMTE DE LA BOPLE

TRANCHÉE D'EXPLORATION (LVM, ADOT 2011)

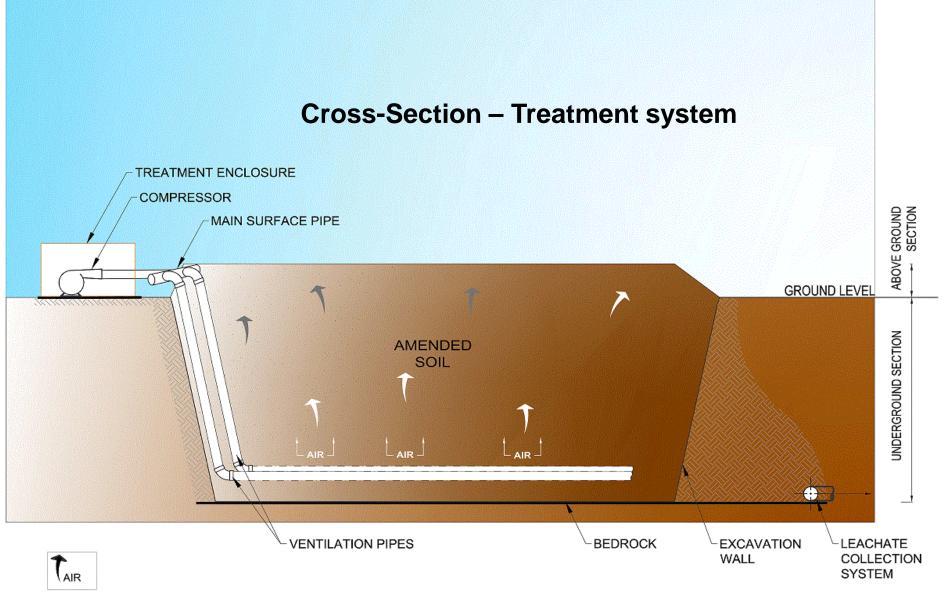
4 Challenges

- > Site only accessible by helicopter
- Design of a low energy consumption treatment system - 20kW
- ➢ Full completion in 2 years

- Optimization of the system according to site characteristics such as northern climate, topography, limited presence of site personnel
- Initial concentrations required a treatment efficiency of 85% for hydrocarbons

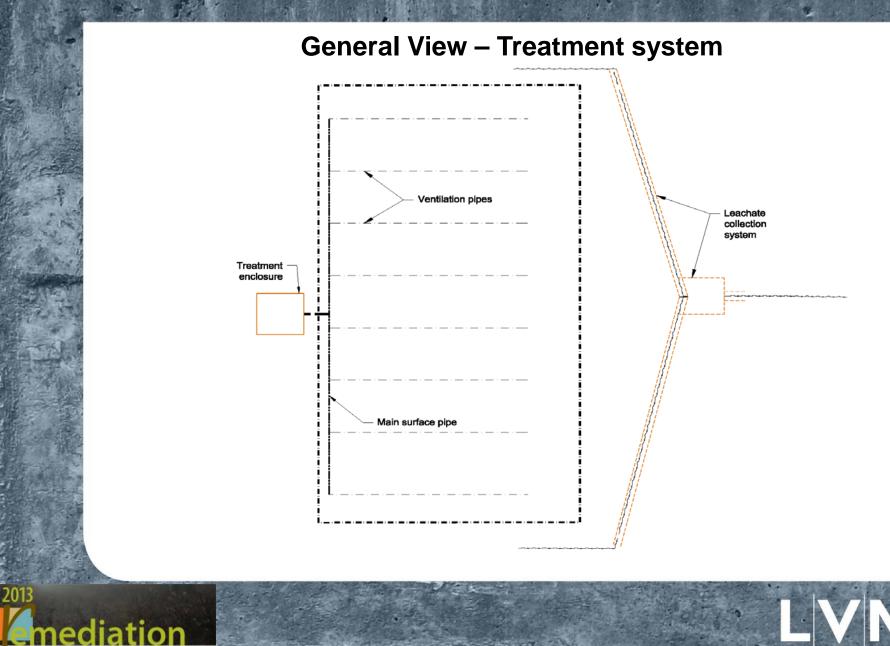
5 Selection of Remediation Technology

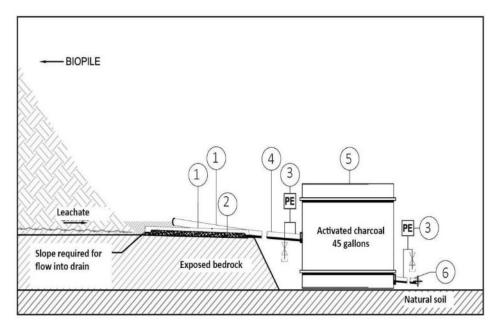
- > Selection was done following assessment of different options
 - ➢ off-site disposal by helicopter
 - ➤ chemical oxidation
- > On-site biotreatment was the most appropriate solution
- Design had to be adapted to site conditions and transportation limits



5 Selection of Remediation Technology

> Advantages of the selected technology


- Reduce green-house gas by preventing the use of the helicopter to dispose soil off-site
- A section of biopile was located underground, which prevented excess loss of heat during treatment
- Can be implemented directly on bedrock of clean impermeable soil without the use of a liner
- Flexibility and adaptability



technologiesymposium

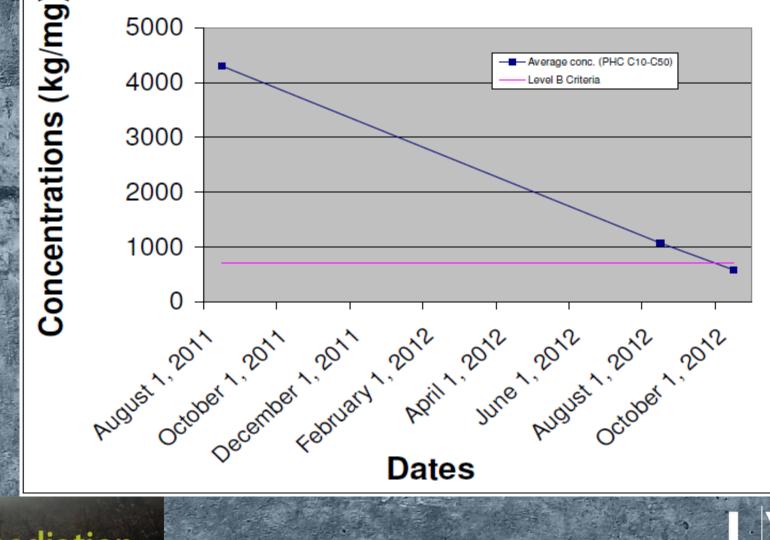
5 Selection of Remediation Technology

Leachate Recovery System

- ➢ No need for pump
- Utilization of the natural slope of the site
- Water treated with activated carbon prior to disposal

5 Remediation

- A volume of 550m3 of impacted soil was stockpiled for treatment
- System had a low energy demand (3.75kW on the allowed 20kW)



Treatment Efficiency

6 Results

➤ 100% of soils below Level B of the MDDEP's Policy

- ➢ No incident or accident
- > 2013 Canadian Consulting Engineering Award
- Inspiring project

THANK YOU

Soil and Materials Engineering Environmental Engineering Building Science Supply Chain Quality

LVM.CA

HEALTH & SAFETY OHSAS 18001

