

PROOF-OF-CONCEPT EVALUATION VERIFICATION OF IN-SITU PHC REMEDIATION UNDER ACTUAL SITE BIOGEOCHEMICAL CONDITIONS

Kent C. Armstrong – *BioStryke®* Remediation Products, LLC Naji N. Akladiss – Maine Department of Environmental Protection

Presentation Outline

- Site Description
- Summary of Pilot Study Process
- Evaluation Methods
 - Passive Additive Release
 - Low-Cost, Low-Risk Evaluation
 - Conservative and Repeatable Process
- Description of *BioStryke*[®] TPHenhanced[™]
- Summary of Results
- Case Study Examples
- Questions and Answers

Site Description Loring AFB Argyle Pump Station

- One of 4 Pump Stations Supporting the Searsport Pipeline for over 40-years
- Conveyed JP Fuel from Portland Maine to the Loring AFB to Support WWII Efforts
- Post-War Efforts Pipeline Conveyed
 - Fuel Oils (Gas, Diesel, No 2/No 4)
 - Aviation Fuels (JP, JP-4)
 - Home Heating Fuel
- Decommissioned in 1991
- Utilization, Maintenance, and Housekeeping Resulted in Multiple Release of Various PHC's
- Dissolved Phase Plume, Smear Zone and Saturated Site Soil Contaminants
- Elevated Naturally Occurring Organic Mass


Site History Loring AFB Argyle Pump Station

- Previous Remediation Strategy Included
- In-Situ Air Sparge /Vapor Extraction System (AS/VES) Installed 2001
- Remediation Goals Included

BioStryke

- Removal of Soil PHC Vapors
- Removal of Dissolve Phase Contaminants
- Increase Groundwater Oxygen Levels to Support Aerobic Bioremediation
- Maine Department of Environmental Protection (MEDEP)
 - Ceased AS/VES Operations in 2006
 - Decreased Contaminant Removal and Increased Maintenance Costs
- Proof-of-Concept Evaluation Allowed in 2009
- Goal to Determine Efficacy of In-Situ
 Anaerobic PHC Degradation

Proof-of-Concept Evaluation Loring AFB Argyle Pump Station

- Proof-of-Concept Evaluation Designed to Determine Efficacy of In-Situ Anaerobic Contaminant Destruction
- Proprietary Biostimulation Formulation
- Provided Metabolic Analog to Oxygen
- Remediation Goals Included
 - Destruction of Dissolved Phase Contaminants
 - Increased Bioavailability of Residual PHC Mass
 - Elimination of Above Ground Support
- BioStryke[®] TPHenhanced[™]
 - Proprietary Blend of Electron Acceptors
 - Leverages Existing Site Conditions
 - Biostimulates Native Microbial Populations
 - Eliminates Energy Costs; Nuisance Odors, Emissions, and Vapors

Evaluation Process Overview

- On-Site Treatability Evaluation
 - Additive Deployed by Passive Release Units (PRS)
 - Selectively Permeable Wicking Fabric
 - Passive Additive Release Over-Time
 - No Long-Term Impact to Site Geochemistry
- PRS Deployment Units
 - PRS Unit is 5-feet long, 1-5/8th inch Circumference
 - Each unit contains 2 pounds of Additive
 - Suspended within Screened MW Interval
- Performance Evaluation
 - Groundwater Monitored & Sampled for Analytical Testing Throughout Proof-of-Concept Process
 - Additive Efficacy Determined by
 - Comparison of Baseline Data to that obtained from Multiple Rounds of Performance Monitoring, Sampling and Testing Events

PRS Deployment Units

- Established Performance Criteria
 - Minimum Criteria 50% Destruction
- PRS Extent of Impact
 - Minimal Area-of-Influence (≤ 1 meter AOI)
 - Passive-Aggressively Amends GW Column
 - Biostimulates Native Microbial Populations
 - Effects Site Geochemistry Positively
- Low-Cost, Low-Risk
 - Confirm Biotic Pathway Exists On-Site
 - Eliminates Laboratory 'Jar-Effect'
 - Identify Future Evaluation Needs (Field/Lab)
 - Confirm Full-Scale Loading Demand Estimates
 - Model Full-Scale Impacts to Site Geochemistry

Pilot Study Program Protocols

- Sample Collection Low–Flow Purge Protocols
- Non-Purge Removal Required
- Purging of GW Monitoring Well Adversely Skews Study Results
 - Removes Amended Groundwater
 - Removes Biostimulated Microbial Population
- Groundwater Monitored and Sampled
 - Typically every 7–10 days
 - For this study replaced PRS units 7 times
 - 13-week Evaluation Period
- PRS Deployment Units are removed and Replaced After Completion of Each Monitoring/Sampling Event

Biostimulation as a Source Control Strategy

Anticipated Observations - Geochemical

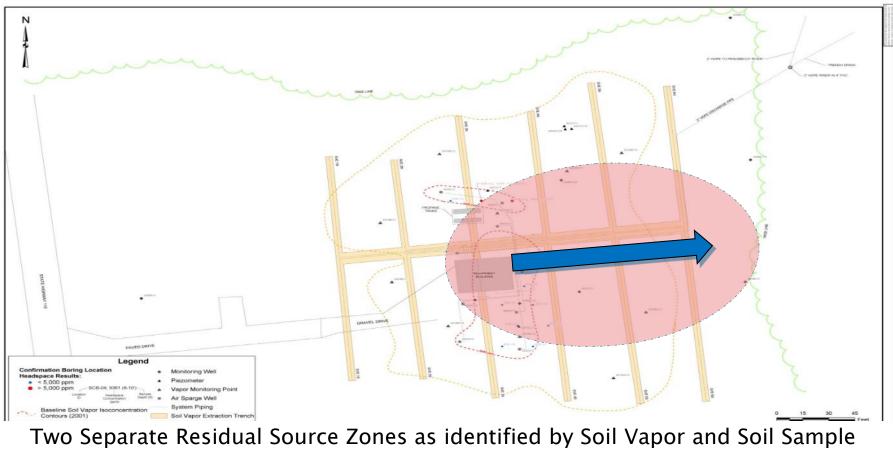
- Increased Oxygen Reduction Potential (ORP)
- Reduced Production of Methanogenic Gasses and Conditions
- Rapid Utilization of Additive Components
- Increased Native Populations of Heterotrophic Petrophylic Microbials
- Enhanced Volatile Fatty Acid (VFA) Production
- Increased Contaminant Bioavailability
- Increased Rates of PHC Degradation in Direct Response to Additive Availability

Pilot Study Process Confirms Biostimulation as a Source Control Strategy

Anticipated Observations - Contaminants

- Rapid Biodegradation of Dissolved Phase Petroleum Hydrocarbon Contaminants
- Increased Microbial Population Growth
- Increased Production of Volatile Fatty Acids (VFA's)
- Enhanced Flux (desorption) of PHC Residual Source Mass
- Increased Contaminant Bioavailability
- Enhanced Anaerobic Biodegradation
- No Fuel Consumption, Generation of Nuisance Emissions, Vapors, Noise
- Cost-Effective Remedial Performance with Less Environmental Impact = GREEN

BioStryke[™] TPHenhanced[®] Pilot Study United States Air Force


- Former US Air Force Fire Training Facility
- Contaminants of Concern: BTEX, Naphthalene
- Gasoline and Diesel Range Organics (GRO/DRO)
- Volatile and Extractable Petroleum Hydrocarbons (VPH/EPH)
- Baseline [VPH/EPH] 5,713 mg/L and 1,746 mg/L, respectively.

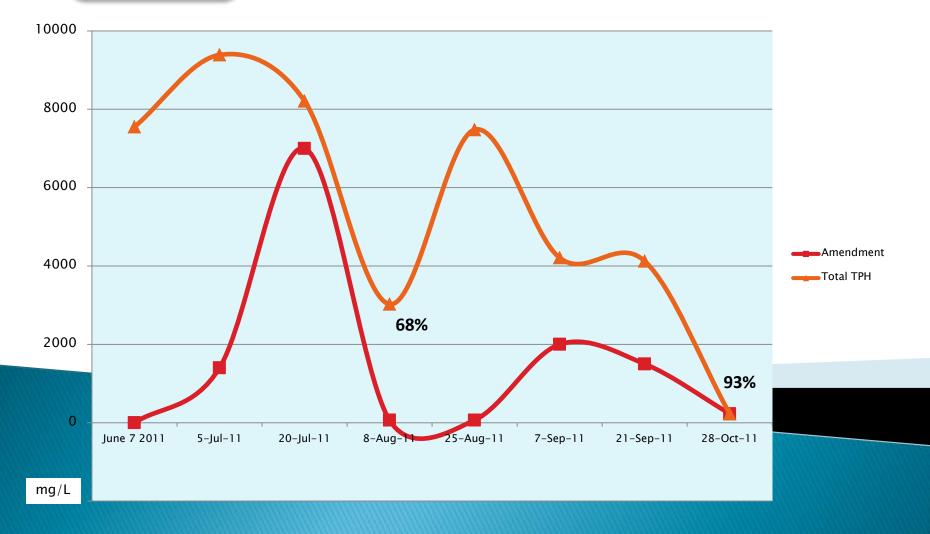
BioStryke[™] PRS Based Pilot Study Former Air Force Base Pipeline Argyle, Maine USA

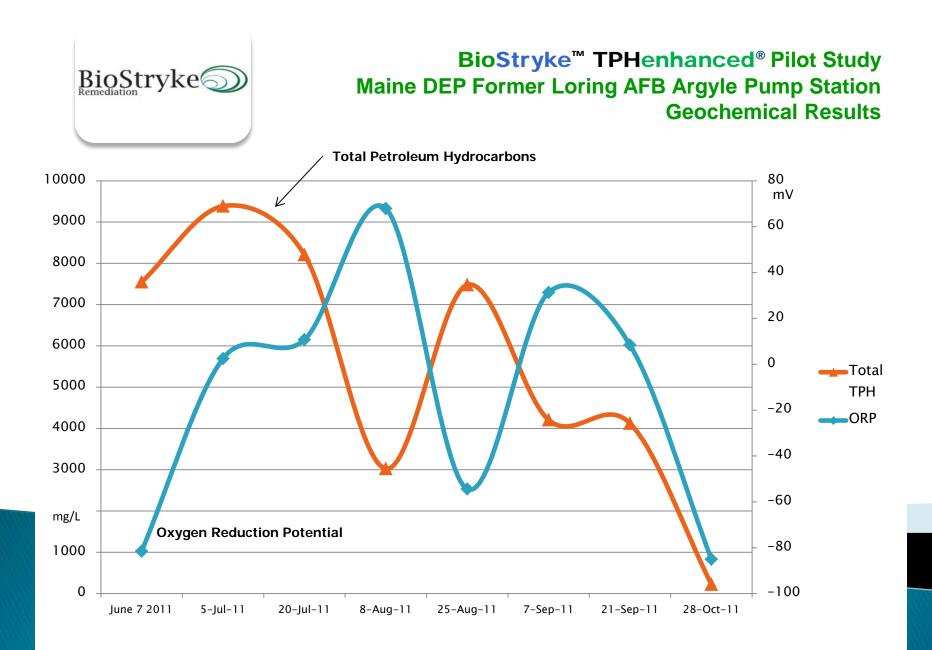
Analyses

BioStryke[™] PRS Based Pilot Study Former Air Force Base Pipeline Argyle Maine

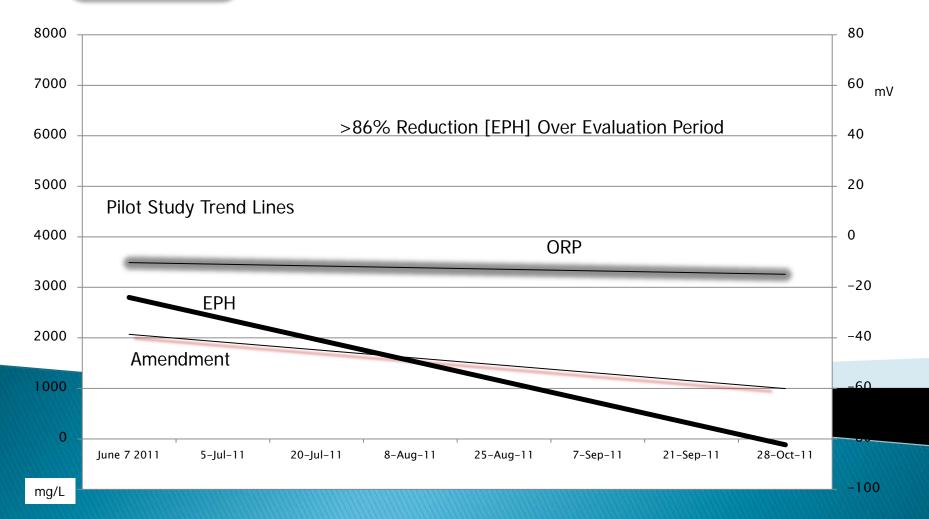
(µg/L)	6-7-11	7-5-11	7-20-11	8-8-11	8-25-11	9-7-11	8-14-12	10-28-11
Total VPH+EPH	7,459	9,387	8,209	3,026	7,479	4,209	4,124	3,831
Total BTEX	1,355	1,284	1,406	351	4,730	1,027	958	1,015
VPH	5,713	5,614	5,456	2,213	6,778	3,792	3,833	3,582
EPH	1,746	3,773	2,753	813	701	417	291 🚺	249
TPH ENHANCED™	<0.05	1,400	7,000	64	67	2,000	1,500	230

Initially Observed Slight Increase in Bioavailability Followed By Return to Baseline Week 4 Realized Significant Reduction in Dissolved Phase Contaminants with a Concurrent Depletion of Biostimulating Additive


Week 6 Realized Massive Desorption of Residual Source Mass Contaminants


Realized 93% Decrease in [EPH] and 60% Decrease in total [VPH/EPH]

99.8% Assimilation of TPHENHANCED[™] within 1 year to 13 mg/L


BioStryke[™] TPHenhanced[®] Pilot Study Former AFB Argyle Pump Station Pilot Study COC Results

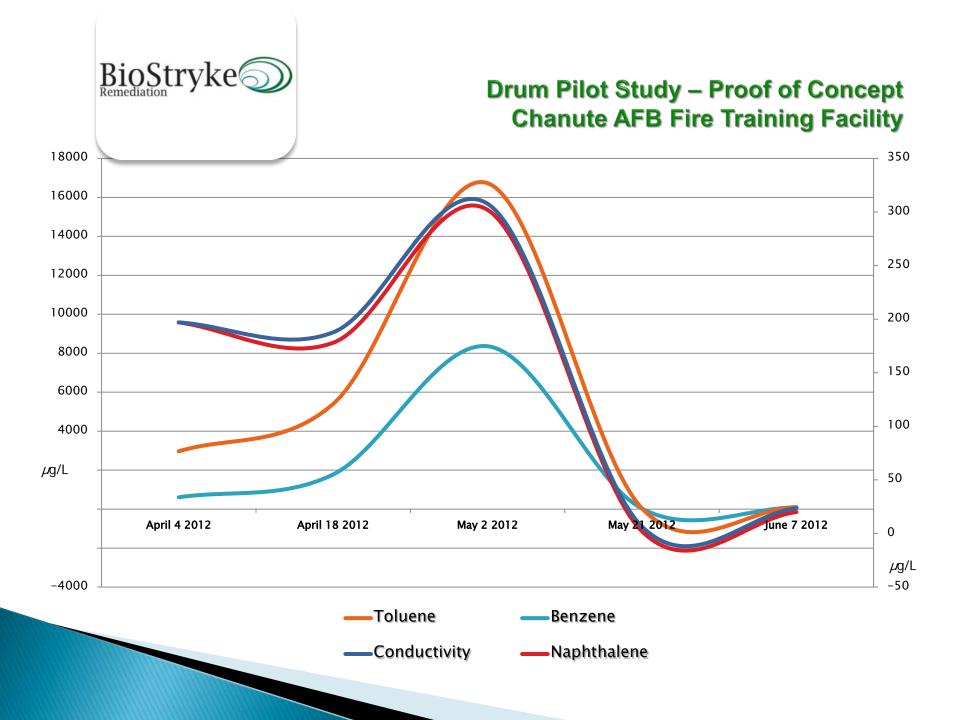
BioStryke[™] TPHenhanced[®] Pilot Study Maine DEP Former Loring AFB Argyle Pump Station

BioStryke[™] PRS Based Pilot Study Former Air Force Base Pipeline Summary of Geochemistry

(mg/L)	6-7-11	7-5-11	7-20-11	8-8-11	8-25-11	9-7-11	8-14-12	10-28-11
рН	6.2	5.88	6.31	7.27	6.09	6.46	6.59	6.67
ORP	-81.5	NA	10.7	67.9	-54.4	31.3	8.4	-84.7
DO	0.01	1.05	1.12	0.82	1.02	1.03	2.35	0.28
Methane	6,300	7,600	NA	3,500	4,500	5,100	4,200	4,200
SO	<1	<250	<1000	<20	<50	<200	1,000	<50

pH Levels Remained Relatively Stable

- ORP Readings Indicate Periods of Enhanced Reducing Conditions
- Methane Production Decreased in Response to Additive Deployment
- Periods of Greatest PHC Biodegradation Concurrent with Elevated ORP
 - Pilot Study Demonstrated Efficacy of Anaerobic PHC Degradation as Source Control

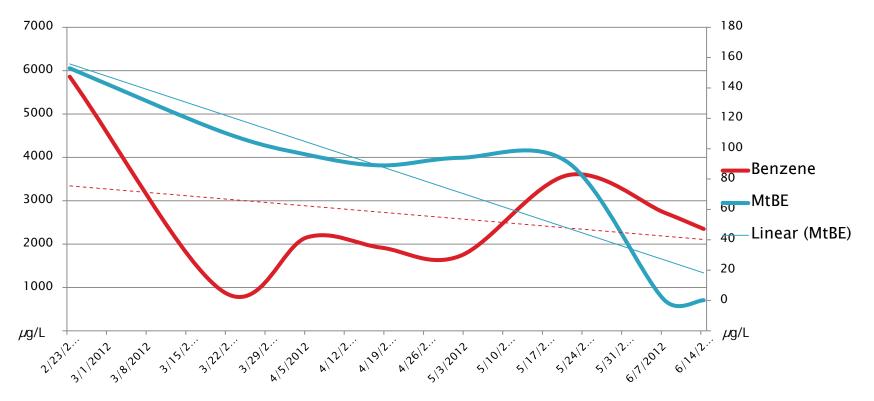


Drum Pilot Study – Proof of Concept Chanute AFB Fire Training Facility

	April 4 (µg/L)	April 18 (µg/L)	May 2 (µg/L)	May 21 (µg/L)	Reduction	June 7 (µg/L)
Benzene	606	1,780	8,350	24.6	99.7%	92.3
Naphthalene	197	178	302	2.02	99.3%	19.7
Toluene	2,360	3,620	8,370	13.4	99.8%	8.4
1,2,4-TMB	282	224	843	4.13	99.5%	70.5
рН	NT	5.7	5.3	6.1	NA	6.7

- Placed Contaminated Saturated Soil Containing Residual Mass in 55-gal drum
- Contaminated Matrix Removed from Source Zone in Proposed Treatment Zone
- BioStryke[®] TPHenhanced[™] Dosing rate = Full Scale Recommendation
- Initially Realized Massive Increase in Contaminant Bioavailability after 4-weeks
- Followed by > 99% Decrease in [PHCs] at weeks 7-8 of Evaluation Period

Rebound Observed Due to Additive Depletion


Injection Pilot Study – Proof of Concept Test Area 1 - Chanute AFB Fire Training Facility

	Feb 23 (<u>ug/L)</u>	March 21 (µg/L)	April 5 (µg/L)	April 18 (µg/L)	May 2 (µg/L)	May 21, 2011
Benzene	5860	916	2160	1920	1730	3590
Naphthalene	26.6	2.36	26.8	14.6	5.5	5.5
MtBE	153	111	96	89	93	91.4
Conductivity	23.2	4.7	4.3	4.7	4.2	4.65
рН	8.1	7.3	7.5	7.6	7.4	7.9

- Multiple Point DPT Injection over 25 x 56-ft Impact Zone w 10-ft Thickness
- Two GW Monitoring Wells Located Proximate to Center of Treatment Zone
- Smear Zone at Capillary Fringe 2-3 feet thick; Continuous Residual Source Mass
- BioStryke[®] TPHenhanced[™] Dosing Rate = Drum Study & Full Scale Applications
 - Concentrations of Benzene Initially Decreased 84.3%
 - Subsequently, Benzene Concentrations Decreased 70.5% over 10-week period
 - Concentrations of Naphthalene Decreased 79.3% during same period
 - Trending Decrease in Recalcitrant MtBE also Observed (39% decrease)

Injection Pilot Study – Proof of Concept Chanute AFB Fire Training Facility

Pilot Study Confirms Cost-Effective Anaerobic PHC Destruction Possible

Pore Space Slurry Displacement Rate < 1.5% using 77 gallons/node</p>

Estimate Additive Cost < \$4.00 per Treated Ton</p>

BioStryke[™] TPHenhanced[®] Pilot Study Maine DEP Former Loring AFB Argyle Pump Station Conclusions

- Innovative Anaerobic In-Situ Bioremediation Strategy
 - >90% Reduction [EPH] over 13-week evaluation period
 - >80% Reduction [BTEX] over 13-week evaluation period
 - >71% Reduction [VPH] by day 61; 45% Reduction over 13-week evaluation period
- Demonstrated Ability To Passive-Aggressively Enhance
 - Facultative Microbial Respiration, Contaminant Bioavailability & Biodegradation
- Evaluation Influenced by Contaminant Advection into Limited Treatment Zone
- Total Full-Scale Amendment Cost estimated < \$7 per ton
- Eliminating Aboveground Energy-Consuming Emissions-Generating Equipment
- BioStryke [®] TPHenhanced [™] = Sustainable <u>Green</u> NAPL Source Control

BioStryke[™] TPHenhanced[®] Pilot Stud Locations

- United States Air Force: Chanute AFB, Illinois (ongoing)
 - Former Fire Training facility
 - Multiple Petroleum Contaminants
 - Between 200% 400% increase in [dissolved] due to mass desorption
 - Between 35% and 115% Reduction in [Benzene] over 3-months for approximate 60% average destruction rate
- Former Gas Station facility: Southern New Jersey, NJDEP (ongoing)
- Maine, New Hampshire, NJ, PA and New York Deployment Locations
- Former Fuel Distribution facility: London, Ontario, MOE (ongoing)
 - Smear Zone and Vadose Zone TPH (GRO/DRO) Contaminants
 - Amendment deployment via subslab infiltration gallery
 - >94% destruction in GRO/DRO dissolved phase contaminants in 4-wks

Summary of Evaluation Process Benefits – Limitations

Confirmed Biotic Degradation Pathway Plausible w/ Significant PHC Decreases

- Low-Impact, Low-Risk w/ Minimal to NO Long-Term Impact to Site BioGeochemistry
- Performed on-Site Under Actual Site Geochemical Conditions Providing "Go-no-Go" Evaluation Process that is Conservative-Representative
- Provides Owners/Generators, Practitioners, & Regulators Added Confidence
 Prior to Commitment to any Additive Based Remedial Strategy
- Requires Scheduled, Consistent and Accurate Field Monitoring, Groundwater Sampling and Laboratory Analytical Testing
- Assists in Establishment of Full-Scale Amendment Demand , Rate of Assimilation, Treatment Timelines, and Full-Scale Additive Cost Estimates
 - Approved by Ministry of Ontario Environment, USAF, NASA, Numerous
 United State Environmental Regulatory Agencies, International

BioStryke

Thank You ?? Questions ??

BioStryke Remediation Products, LLC P.O. Box 254, Andover NH www.biostryke.com

Thank You