PARSONS

Remediation Technology Symposium (RemTech) 2012 Conceptual Site Models for Environmental Investigations and Remediation

October 18, 2012

Tai T. Wong, P.Eng.

Authors and Presenter

• Authors:

- James Carss, Parsons
- Caroline Serhal, Parsons
- Tai Wong, Parsons
- Presenter: Tai T. Wong, P.Eng. <u>tai.wong@parsons.com</u>

Outline PARSONS

Conceptual Site Model:

- What
- Why
- Key Components
- Examples
- Take Home Messages

What Is a Conceptual Site Model (CSM)?

- Realistic but simplified representation of known site conditions necessary for decision-making
- Can include:
 - Tabulated data
 - Graphical data: maps, cross-sections and plots
 - Written summary
 - Remember a picture is worth a thousand words
 - Combination of the above

References

Triad Resource Centre, 2012. Conceptual site model development. <u>http://www.triadcentral.org/mgmt/splan/sitemodel/ (</u>accessed May 02, 2012). Golder Associates, 2010. Technical Guidance for Contaminated Sites, Groundwater Investigation in Site Assessment. Report No. 07-1412-0162 Submitted to Land Remediation Section, BC MOE. <u>www.env.gov.bc.ca/epd/remediation/reports/pdf/tech-guide-gw.pdf</u> (accessed May 14, 2012)

Why a CSM?

- Summarizes known conditions of a site
- Identifies data gaps
- Improves decision making by allowing:
 - More targeted investigation, monitoring and sampling
 - Better modelling to address data uncertainty and sensitivity
- Documents the rationale for decision making
 - Enables consistent decisions among different professionals

It is also a QA process!

Steps to Develop a CSM

- 1. Define objective(s)
- 2. Summarize currently available data in a preliminary CSM
- 3. Identify data gaps and attempt to rectify
- 4. Update contents (both objectives and data) as relevant information becomes available

A CSM is a living document!

Use graphical or pictorial data whenever possible!

Principal Components of a CSM

- Objective(s) of the CSM
- Site information
- Geologic setting
- Hydrogeologic data
- Contaminant data
- Exposure pathways and receptors
- Remediation criteria
- Applicable remedies (if required)

Typical Objectives of a CSM

- Determine sampling locations to identify source and extent of impact:
 - E.g., metallic lead (soil), gasoline (soil, liquid & air)
 - Can be initial or follow-up sampling locations
- Determine potential risks:
 - E.g., DUA, vapour inhalation
- Facilitate numerical modelling
 - E.g., bail test, groundwater flow, contaminant flow and transport, LNAPL distribution and mobility
- Evaluate or design remedies
 - E.g., extent of excavation, placement of extraction wells, vapour management

Site Information

- Location
- Climate:
 - Site access (drill rig access)
 - Restriction on applicable technology (SVE in the Arctic)
- Land use, onsite and adjacent area:
 - Zoning
 - Utilities, including rights-of-way
 - Pipeline
 - Railroad

Geologic & Hydrogeologic Data

- Stratigraphy:
 - Use of cross-sections
- Geologic boundaries:
 - Coarse and fine contrasts, confining layers, bedrock, fractures, channels, etc.
- Groundwater:
 - Water table or potentiometric surface, flow directions, seasonal variation, tidal fluctuation
 - Lateral and vertical gradients
 - Confined or unconfined aquifer, discharge or recharge
- Surface water:
 - Natural water bodies, dugouts, surface drainage

Contaminant Data

- Nature of contaminants:
 - Properties in the appropriate temperature range
 - Potential impacts to environment
- Distribution in three dimensions:
 - Up, down and all around
- Transport pathways and receptors
- Applicable criteria
- Possible remedies (if required)

Examples

PARSONS

CSM Example 1: DUA Assessment

Objective:

To determine if the DUA (domestic use aquifer, aka potable water) pathway is applicable

Some basic requirements:

- 1. Need to determine:
 - a) If shallow (surficial) stratum is a DUA, otherwise:
 - b) Can the shallow stratum act as a separation layer to a possible DUA at depth
- 2. Alberta ESRD requires determining hydraulic conductivities within the same formation at a minimum of three locations for an average size site

References

- AENV 2010. Alberta Tier 2 Soil and Water Remediation Guidelines.
- Kurc et al. 2008. To be or not to be a DUA? Available from Remtech webpage: <u>http://www.esaa-events.com/remtech/2008/pdf/Paper-46.pdf</u> (accessed May 14, 2012)

Example 1: Available Data - Site Plan

Example 1: Hydrogeologic Cross-Section A-A'

Example 1: Hydrogeologic Cross-Section B-B'

PARSONS

 \checkmark

Example 1: Groundwater, LNAPL & Dissolved Plumes

Example 1: Based on Available Information...

Do we have sufficient data to carry out a DUA determination?

If Not

What additional work needs to be done? Can it be done together with DUA determination?

If So

Where would you put your DUA wells? How would they be screened?

- For this site, CSM data can be summarized using an Excel spreadsheet:
 - Usable for relatively simple sites
 - Spreadsheet available upon email request
- It forms only a part of a CSM, needs to be supplemented by additional data such as site plans, cross-sections, etc.

Minimum Data Required for the Development of a Conceptual Site Model

Reference Number: 471	413 01001
-----------------------	-----------

Data for Developing a Conceptual Site Model

Attach scaled and dimensioned Site Plan

Date: 2012-05-17

Soil Data				Groundwater	Contaminant(s) of Potential Concern	
For each major soil stratum, enter:				Depth to GWT:		
soil type: Select either fine, coarse, bedrock, weather bedrock, or ?			k, or ?	min. <u>6.4</u> m bgs		
hydraulic conductivity: K_h and K_v (m/s)				max. 7.2 m bgs	Fertilizer Sulphate	
	Soil Type	K _h	K _v	φe		Others:
Stratum 1:	coarse	?	?	?	Hydraulic Gradient:	
2:	fine	?	?	?	value: ?	Delineated: 🗹 Horizontal 🔲 Vertical
3:	coarse	?	?	?	direction: SE	
	-					Criteria Selection
					Assumed effective porosity	Attach summary from:
					$\phi_{e} = 0.25 \text{ to } 0.30$	Pathway selection and receptor identification or discribed in IOL Staged Phase II ESA POP
Maximum depth of ir	ntrusive					
investigations (m)		10.0				✓ 2010 Alberta Tier I and Tier II (ptt, va, enmination) generic criteria selection summary (0, El sureadsheet)
	· · · · · · · · · · · · · · · · · · ·	24				
Estimated thickness	of exclusion layer				G. al	☐ Site-specific crite a ret elopment
(for DUA evaluation)	, T _x (m)	5.0			Nº +2	Other criteria development procedure:
	50.					
Sketch (can be har	nt arawn)	K in m/s				
	Coarse (sand an	d gravel / sar	ad)	Δ./	GROUND	
Sketch in:	Coarse (sand an	u graver / sai	iu)	98		
each major soil	K _h = ?	K _v =?	$\phi_e = ?$	3.51	D_{w} , min. D_{L} , max.	D min D may denth
stratum,					GWT GWT	depth to to impact
contaminant depths.	Fine (clay)			¥		impact
	$K_h = ?$	K _v =?	$\phi_e = ?$	E		V
Depths are not				4.0		
drawn to scale						
	Coarse (sand)			V	D _w = 6.2 m	D _c = 8.0 m
	$K_h = ?$	K _v =?	$\phi_e = ?$	EO		
				10.	$D_L = 7.4$ m Seasonal	$D_i = 10.0 m$
				1	Variation = 0.5 m	
		0				

Notes: bgs denotes below ground surface.

GWT denotes groundwater table.

Data based on data available in 2008 (from other consultants)

Example 1 – Soil Data Summary

Data Gaps	Maximum depth of intrusive investigations (m) 10.0
Suspicious soil classification during drilling –	Estimated thickness of exclusion layer (for DUA evaluation), T _x (m) <u>5.0</u>
sand jumps to clay	Sketch (can be hand-drawn) K in m/s
is 10 m, similar to maximum depth where	Sketch in: each major soil $K_h = ?$ $K_v = ?$ $\phi_e = ?$ $\phi_e = ?$ $\phi_e = ?$
impact is detected	contaminant depths. Fine (clay) $K_h = ?$ $K_v = ?$ $\phi_e = ?$ E Depths are not drawn to scale
	Coarse (sand) $K_h = ?$ $K_v = ?$ $\phi_e = ?$ E 0
	↓

Example 1 – Contamination Data

Example 1: Next Steps - 1

Step 1:

Additional drilling to vertically delineate LNAPL impact and ascertain soil types

Example 1: Next Steps - 2

 Step 2: Install at least 3 deep DUA wells as shown screened below the lowest impact with ~4 m screen length

Deep DUA wells should be located outside impacts to avoid potential crosscontamination!

Examples

PARSONS

\uparrow

Ν

- CSM Example 2:
 - Vapour intrusion assessment using soil gas monitoring wells

Example 2 – Vapour Intrusion Assessment

Objective:

To assess the potential of soil vapour intrusion due to dissolved gasoline impacts in groundwater for a residence using standard Parsons (OAEI) soil gas monitoring wells (SGMWs)

References:

Wong and Agar, 2009. Development of a technically defensible soil gas sampling strategy for vapour intrusion assessments. Canadian Geotechnical Journal, **46**(1): 102-113.

Example 2: Site Plan

 A hypothetical site located at the same location as in Example 1, site condition is shown in the following slide

Example 2 – Data Summary

Example 2 – Proposed SGMW locations

Which option is more appropriate – 1, 2 or 3?

Examples

- CSM Example 3:
 - Develop a CSM for an inactive industrial landfill

Example 3 – CSM for an Inactive Industrial Landfill

Objectives:

- To understand geological and hydrogeological conditions
- To summarize soil, groundwater and soil gas chemical conditions onsite
- To identify data gaps
- To recommend additional measures for post-closure care

Example 3 – Data Source & Site Plan

Key Data Sources

- Other consultants' reports, 1967-2010
- Parsons (OAEI) intrusive site investigation reports (including geophysics) - 2011 and 2012
- Environment Canada climatic data
- Land use data
- Air photos, e.g. National Air Photo Library
- Alberta Environmental Site Assessment Repository (ESAR)

Example 3: Data Summary

- Topography
- Surface water drainage pattern
- Geology and Hydrogeology:
 - cross-sections
 - potentiometric contours
- Cross-section from site to a river
- Thickness of debris
- Chemical impacts identified:
 - soil, groundwater & soil gas

Example 3: Typical West-East Cross-Section

Example 3: Debris Thickness

4 m

Data Gaps Identified - 1

- Soil Gas:
 - Chloroform is the PCOC, source is uncertain, not delineated, potential exposure not assessed
- Debris:
 - Disposal methods of waste material unknown
 - Landfill cap is only intermittent
- Soil:
 - Background concentrations of PCOCs not determined
 - Leachable metals analyses not performed for soils
 > 6 m bgs
 - Possible asbestos impact

Data Gaps Identified - 2

- Groundwater (gw):
 - Background concentrations of PCOCs not determined
 - Vertical and lateral extents of gw impacts not delineated
 - Seasonal variation of potentiometric elevation not determined
- Surface Water:
 - Potential impact on surface runoff by exposed debris
 - Effect from surface runoff from upgradient locations
- Future Land Use:
 - Unknown

Recommendations on Post-Closure Care

- Engineered cover/cap over complete site
- Additional soil gas monitoring wells at site boundaries with adjacent buildings
- Regular monitoring and sampling of groundwater and soil gas for selected parameters to determine trends
- Develop site-specific risk management criteria
- Detailed geochemical modelling for contaminant transport

Take Home Messages

Take Home Messages

- To develop a CSM we need:
 - Objective(s) of the CSM
 - Site information
 - Geologic data
 - Groundwater and surface water hydrogeologic data
 - Contaminant data
 - Transport pathways and receptors
 - Applicable remediation technology (if required)
- A CSM is a living document and needs to be updated as new information becomes available
- A CSM provides a documented basis for rational decisions

Questions and Discussion

Thank you for attending

