For a balanced environment...

CONSIDERATIONS FOR SOIL SELENIUM GUIDELINES AND RESULTS OF INITIAL TOXICITY TESTING

Remediation Technologies Symposium October 18, 2012 Banff, Alberta

> Tyler Prediger, MSc, PAg Anthony Knafla, MSc, DABT Jay Woosaree, MAg, PAg Nicola Cook, PhD, AIT

OVERVIEW

2

- Background
 - Distribution, uses, basic chemistry
- Selenium speciation and thermodynamics
- Selenium toxicity
 - Accumulator & non-accumulator species
- Soil Guidelines
- Initial plant toxicity testing
 - Role of sulfate, hormesis, results
- Discussion

SELENIUM DISTRIBUTION

• 69th most abundant element (ATSRD, 2003)

- Natural soil concentrations are largely dependent on weathering of parent materials
- Worldwide soil distribution varies
- Soil concentrations range up to 4.7 mg/kg in Canada (CCME, 2009) and 2.3 mg/kg in Alberta (Penny, 2003)

SOIL SELENIUM DISTRIBUTION IN THE UNITED STATES

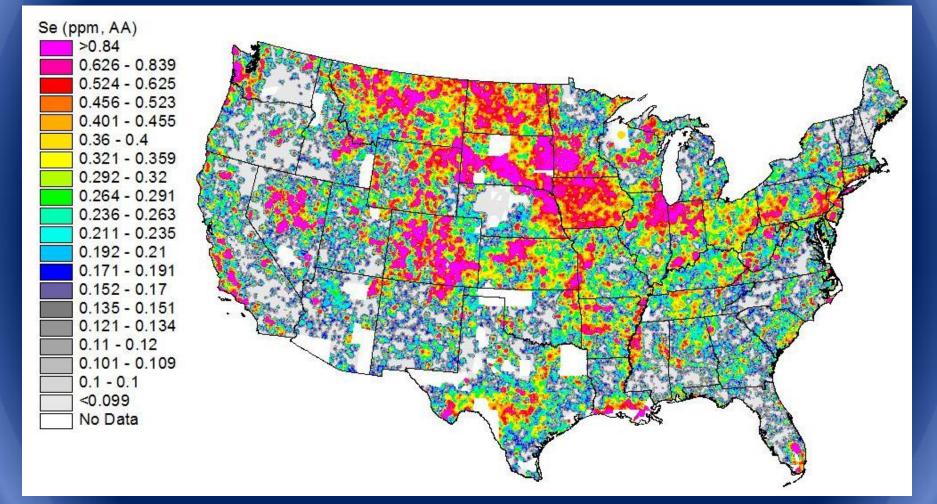


Image Source: USGS, 2012. Sampling density = 1/289 km² 25th% = 0.1 ppm; Median = 0.2 ppm; 75th% = 0.5 ppm; Max: 223 ppm

USES AND ANTHROPOGENIC SOURCES

- Electronics, glass manufacturing, medicine, pesticides, pigments, shampoo, photoreceptors, etc. (ATSDR, 2003)
- In 2003, Japan was the largest Se producer, followed by Canada (CCME, 2009)
- Primary source of Canadian Se is from smelting in Ontario (CCME, 2009)

SELENIUM CHEMISTRY

- Metalloid located between sulfur & tellurium on Periodic Table
- Similar in resemblance & properties to sulfur
 Sulfur

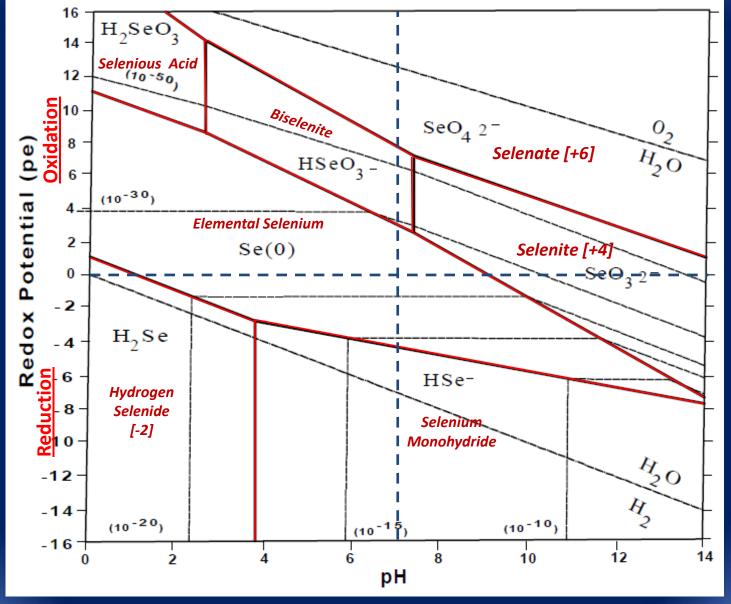
	1A												http://ch	emistry.	about.co	m		8A
	1												© 2009	Todd He	Imenstin	e		2
	H 1.00794 20 Sulfur About Chemistry									He								
	1.00794									Su	ITU	r 🔨						4.002602
	Hydrogen	2A											3A	4A	5A	6A	7A	Holium
	3	4											5	6	7	8	9	10
	Li	Be											В	C.	N	0	F	Ne
	6.941 Lithium	9.012182 Bervllium							_				10.811	12.0107	14.0067	15,9994	18.9984032	20,1797
	11	12							- Sc	lor	niur	n	Boron 13	Carbon 14	Nitrog 15	16	Fluorine 17	Neon 18
	Na	Mg							50		IIUI			Si	P	S	ci	Ar
	22.989769	24,3050											26.9815386		30,973762	32.065	35,453	AF 39.948
	Sodium	Magnesium	3B	4B	5B	6B	7B		— 8B —		1B	2B	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.0983	40.078	44.955912	47.867	50.9415	51.9961	54.938045	55.845	58.933195	58.6934	63.546	65.38	69.723	72.64	74.92160	78.96	79.904	83.798
	Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	VL	53	54
	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
	85.4678 Rubidium	87.62 Strontium	88.90585 Yttrium	91.224 Zirconium	92.90638 Niobium	95,96 Molybdenum	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121,760	127.60	126.90447	131.293
	55	56	57-71	72	73	74	Technetium 75	Ruthenium 76	Rhodium 77	Palladium 78	Silver 79	Cadmium 80	Indium 81	Tin 82	Antimony 83	Tellurium 84	Iodine 85	Xenon 86
	Cs	Ba	51-11	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132 9054519	137.327		178.49	180.94788	183,84	186.207	190.23	192.217	195.084	AU 196,966569	200.59	204.3833	207.2	208,98040	12091	[210]	(222)
	Cesium	Barium	Lanthanides	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
	87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Ср	Uut	Uua	Uup	Uuh	Uus	Uuo
	[223]	[226]		[267]	[268]	[271]	[272]	[270]	[276]	[281]	[280]	[285]	[284]	[289]	[288]	[293]	[294]	[294]
	Francium	Radium	Actinides	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Ununtrium	Ununquadium	Ununpentium	Ununhexium	Ununseptium	Ununootium
								_								_		
				57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				138.90547	140.116	140.90765	144.242	[145]	150.36	151.964	157.25	158.92535	162.500	164.93032	167.259	168.93421	173.054	174.9668
				Lanthanum 89	Cerium 90	Praseodymium 91	Neodymium 92	Promethium 93	Samarium 94	Europium 95	Gadolinium 96	Terbium 97	Dysprosium 98	Holmium 99	Erbium 100	Thulium	Ytterbium 102	Lutetium 103
	Astinidas			27/				1	1011		A CONTRACTOR OF THE	and the second second	10000	1222		101		A CONTRACTOR OF
	Actinides		s	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
2				[227] Actinium	232.03806 Thorium	231.03588 Protectinium	238.02891 Uranium	[237] Neptunium	[244] Plutonium	[243] Americium	[247] Curium	[247] Berkelium	[251] Californium	[252] Einsteinium	[257] Fermium	[258] Mendelevium	[259] Nobelium	[262]
~				Pounsun	monum	, rotactenum	oranium	Neptunium	Flutonium	Americium	Cunum	berkellum	Californium	Einsteinium	rermium	mondesevium	Nobelium	Lawrencium

Image source: Helmenstine, 2012

SELENIUM CHEMISTRY (CONT')

- Selenium fate gained attention in 1980s with Kesterson Reservoir in California
- Complex Biogeochemistry & Thermodynamics
 - Other minerals, microbiological activity, volatilization, Eh, pH, etc.
- Four common valence forms

FOUR COMMON SELENIUM SPECIES


<i>Selenide</i> Se ²⁻	[-2]	Low pH, low Eh, relatively insoluble
<i>Elemental</i> Se ⁰	[0]	Not common in natural environments, relatively insoluble
Selenite SeO ₃	[+4]	Neutral pH, well-drained soils, can be soluble, found in water. More reduced than selenate
Selenate SeO ₄	[+6]	Alkaline soils, highly soluble, found in water. Highest oxidation state

THERMODYNAMIC PREDICTIONS OF SELENIUM SPECIES

black, dashed lines represent contours of equal selenide activities

= Eh(mV)/59.2

Ъe

Adapted from Masscheleyn & Patrick (1993)

SELENIUM TOXICITY

- Essential nutrient for animals and humans, but not for plants
- Essential & Toxic concentrations are quite close for humans and animals
 - "the essential toxin" (Stolz et al, 2002)
 - "double-edged sword element" (Fernandex-Martinez & Charlet, 2009)

PLANT SELENIUM TOXICITY

- Arid and semiarid regions
- Plant toxicity is related to valence form
 - Selenate [+6] is generally most toxic form to plants, followed by Selenite [+4] (ATSRD, 2003)
- White chlorosis

SELENIUM PLANT TOXICITY (CONT')

White Chlorosis in *Hordeum vulgare* (barley)

grown in artificial soil spiked with 15 mg/kg selenium (as selenate) without added sulphate

SELENATE [+6] / SULFATE ANTAGONISM

- Plant selenate uptake can be inhibited by sulfate salinity
 - Similar effect not present with chloride (Mikkelsen et al, 1988)
 - Effect not present in other valence forms of selenium (Gupta & Gupta, 2000)

SELENIUM ACCUMULATORS & NON-ACCUMULATORS

- Accumulators will preferentially uptake selenium over sulfur (Terry et al, 2000)
- Most species are non-accumulators and will preferentially take up sulfate (Terry et al, 2000)
- Non-accumulators have an increased sensitivity to selenium

CURRENT SOIL SELENIUM GUIDELINES

- CCME & Alberta Tier 1 Guideline is 1 mg/kg
 - Natural concentrations up to 4.7 mg/kg in Canada
- Primarily based on two studies
 - Singh & Singh (1979) and Carlson et al (1991)
 - Based on Selenate [+6]
 - LOEC approach

PRELIMINARY PLANT TOXICITY TESTING

- Two objectives:
 - To quantify selenate [+6] toxicity
 - To quantify the selenate-sulfate relationship
- Endpoints measured and test doses are not believed to have been assessed in previous research

METHODOLOGY & RESEARCH DESIGN

- Generally followed Environment Canada's plant toxicity standardized methodology
- Artificial soil
 - 8 concentrations of selenate, 4 sulfate concentrations
 - 4 5 replicates
 - Medicago sativa (alfalfa)
 - Grown in growth chambers at AITF
- EC₂₅ values for measured endpoints, based on threshold / point of departure approach

RESULTS – 0 mg/kg SULFATE

Observable effects

- White chlorosis
- 100% mortality in 15 mg/kg Se

15 mg/kg Se vessel and 0 mg/kg SO₄

0 mg/kg SO₄

<u>Note:</u> No 15 mg/kg Se due to 100% mortality

0 mg/kg Se vessel (left) and 15 mg/kg Se vessel (right), both with 0 mg/kg SO₄

BMD/EC VALUES FOR 25% ADVERSE EFFECT

Endpoint	EC ₂₅ (mg/kg)
Root Mass	0.49
Shoot Mass	0.77
Root Length	0.86
Shoot Length	0.53

Current Alberta & CCME guideline is 1 mg/kg

ADDED SULFATE RESULTS (500, 1,500, 3,000 mg/kg)

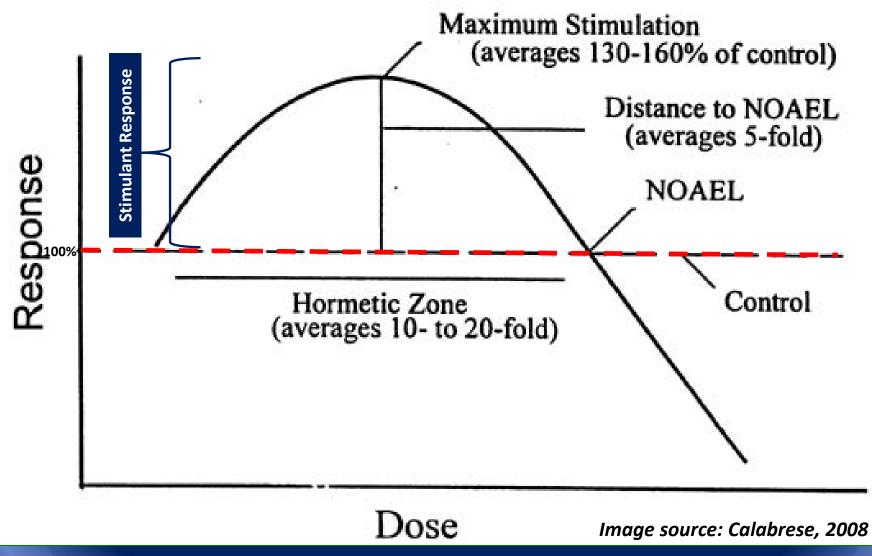
- Minimal observable effects
- 15 mg/kg Se had good vigor
- Stimulant response

15 mg/kg Se Vessel with 500 mg/kg SO₄

500 mg/kg SO₄

 \approx

1,500 mg/kg SO₄



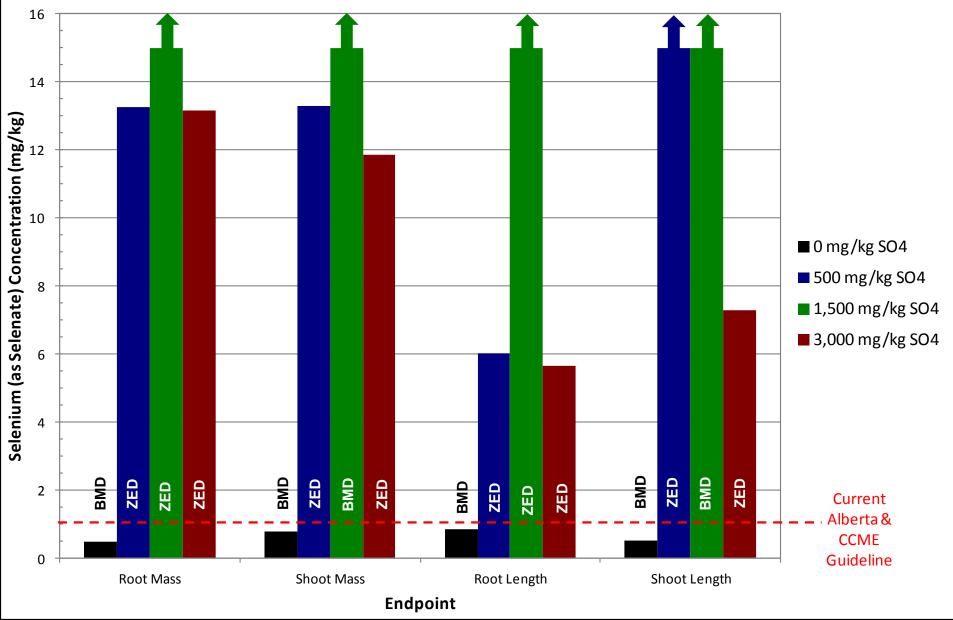
HORMESIS

- Low dose stimulation, high dose inhibition
- With added sulfate, an apparent hormetic effect was observed (J-Curve)
- Used zero equivalent dose (ZED) approach to assess (Gaylor et al, 2003)

HORMESIS

ZED VALUES WITH SULFATE

Sulfate Concentration (mg/kg)


Endpoint	500	1,500	3,000
Root Mass	13.27	>15	13.17
Shoot Mass	13.29	NA	11.86
Root Length	6.01	>15	5.66
Shoot Length	>15	NA	7.30

Current Alberta & CCME guideline is 1 mg/kg

NA = not assessed with ZED approach and were assessed with Hill model because of lack of apparent hormetic effect

DISCUSSION

- Selenium toxicity to plants is based on valence form and biochem/thermodynamics are complex
- Se accumulator Vs non-accumulator species/genera
- Antagonistic relationship of selenate [+6] and sulfate
 - Hormesis

 Socio-economic implications of the 1 mg/kg eco-contact guideline

THANK YOU

- Greg Huber
- Lorie Vickerman
- Marshall McKenzie
- Tania McDonald
- Jeff Newman
- Allen Verbeek
- Jolien Miller
- Farideh Malek
- Karen Schmidt
- Trevor Ahlstrom
- Bob Corbet
- Luanne Patterson
- Kyle Parkyn
- Devon Walker

Equilibrium Environmental Equilibrium Environmental Alberta Innovates Technology Futures Alberta Innovates Technology Futures Alberta Innovates Technology Futures Lakeland College Lakeland College Lakeland College Exova Access Labs Access Labs **CN** Rail **Matrix Solutions Ridgeline Environment**

CONTACT INFORMATION

Tyler Prediger

Anthony Knafla

Jay Woosaree

Equilibrium **Environmental Inc.**

tprediger@eqm.ca

Equilibrium **Environmental Inc.**

Alberta Innovates **Technology Futures** tknafla@eqm.ca

jay.woosaree@albertainnovates.ca

Nicola Cook

Lakeland College

nikki.cook@lakelandcollege.ca

EQUILIBRIUM ENVIRONMENTAL INC.

