

WorleyParsons

resources & energy

Oil Sands Tailings Reclamation: Managing Non-Technical Risks and Leveraging Opportunities

Anjum Mullick, Project Manager – Edmonton Operations Wes Funk, Deputy Global Director EcoNomics and Sustainability October 2012

WorleyParsons is a leading professional services provider to the energy, resource, and complex process industries.

Our services cover the full asset spectrum both in size and lifecycle – from the creation of new assets to services that sustain and enhance operating assets.

With 42,000 people in148 offices throughout 44 countries, we provide our customers with a unique combination of extensive global resources, world-recognized technical expertise and deep local knowledge.

We have seven differentiators which form the strategic focus that drives success in our business and that differentiate us in our markets.

DIFFERENTIATOR 1 Committed, empowered and technically capable people

DIFFERENTIATOR 4 Outstanding operational and corporate performance

DIFFERENTIATOR 2 Industry leadership in health, safety and environmental performance

DIFFERENTIATOR 5 Focus on long-term contracts and asset-based services

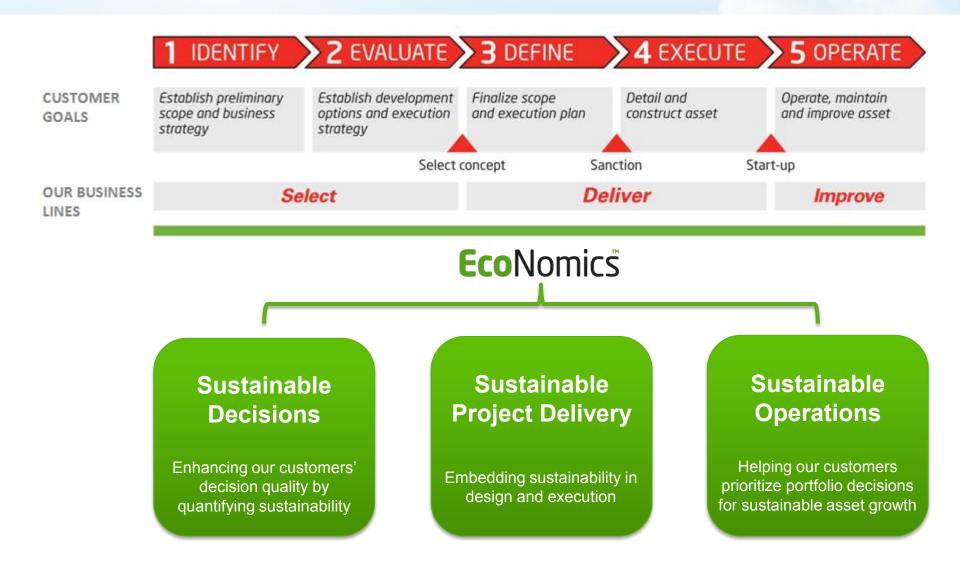
DIFFERENTIATOR 3 EcoNomics[™]- Delivering profitable sustainability

DIFFERENTIATOR 6 Success in project delivery–large and small

DIFFERENTIATOR 7 Comprehensive geographic presence

EcoNomicsTM:

Responding to Our Customers' Drivers for Risk Management, Sustainability and Innovation


EcoNomics

► We collaborate with our customers to **systematically**:

- Identify and manage the full suite of business risks that may impact their projects and operations
- Bridge the gap between their commitments to stakeholders and project delivery
- Ensure projects are aligned with their corporate sustainability goals
- Support decision making where trade-offs exist between technical, social, environmental and commercial performance

Modes of Delivery

Sustainable Project Delivery

Sustainable Project Delivery

Begins with an Alignment Session:

"Do you want WorleyParsons to:"	Response	Deliverable
Consider non-technical business risks that may impact project cost, schedule or profitability?	Yes	Project Risk Workshop
Identify and design for any stakeholder commitments with a material impact on the project?	Yes	Commitments Register
Identify value improvement opportunities that help achieve your corporate sustainability goals?	Yes	Opportunities Register
Help make optimum business decisions where trade-offs exist between technical , environmenta l, social and commercial performance?	Yes	Decision Support Tools

Challenge: Non-Technical Risk

Reporting Frequency by Type of Delay (%)

Of the 190 projects, average delay of 12 months for non-producing fields

Source: Goldman Sachs Investment Research, 2008

Deliverable: Project Risk Workshop

- Facilitated by WorleyParsons risk expert
- Participation from broad expertise, covering wide range of potential stakeholder perspectives
- Involves full consideration of potential technical and non-technical risks that may impact project cost, schedule or profitability
- Ensures mitigation actions are identified and risk (esp. non-technical) is managed through life of project through a risk register

Potential Stakeholders and Risk Sources:

- Project Manager
- Project Owner
- Engineering
- Commercial
- Planning / Strategy
- Construction
- Operations
- Legal / Regulatory
- Environment
- Health and Safety
- Social / Community
- Human Resources

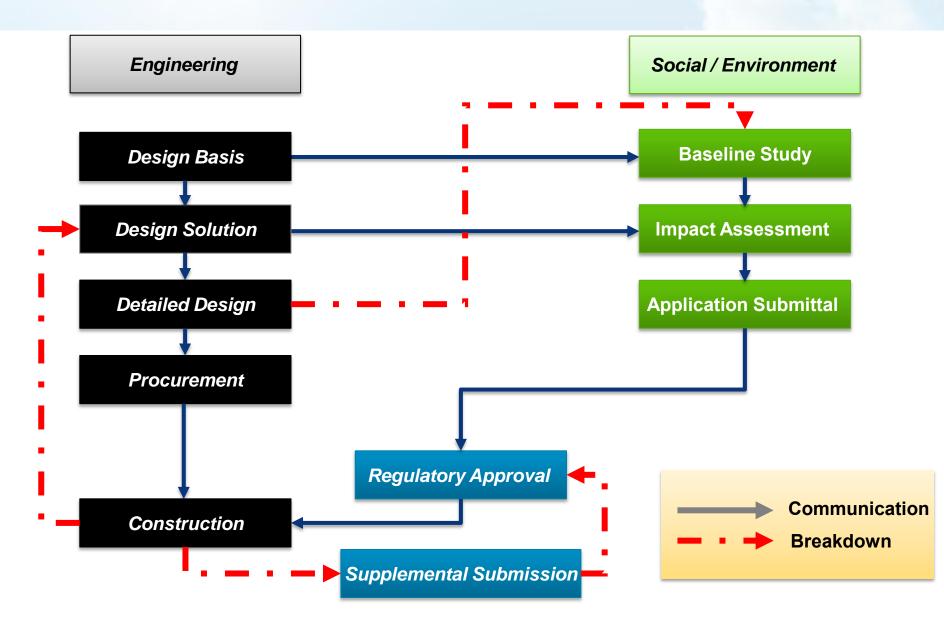
Case Study

Project: Oil Sands Project (2011) **Customer: Confidential Customer**

IDENTIFY VEVALUATE DEFINE EXECUTE OPERATE

<u>Issues</u>

Heavily contested by local stakeholders, environmental non-government organizations, First Nations


Approach

- Facilitated Project Risk Workshop, with multi-disciplinary representation
- Identified significant non-technical risks to the project:
 - Water sourcing and disposal
 - Waste management
 - Community & Legal commitments
 - Customer's corporate sustainability goals
- Embedded expertise and deliverables to address non-technical risks

Value Provided

- Active and ongoing management of non-technical risk through deliverables
- Ensured regulatory and stakeholder commitments are met
- Supported key design decisions from a non-technical risk perspective (CHP & waste management)
- Identified and implemented valueadding sustainability improvements

Challenge: Engineering Recycle

Deliverable: Commitments Register

- Register of commitments made to stakeholders with a material impact on the successful design and delivery of a project
- Used to identify potential delivery gaps, incorporate requirements into project design and demonstrate compliance
- Ensures projects are aligned to stakeholder expectations, preventing 'engineering recycle' and supporting the Approval process

Material commitments are often made to:

- Regulators
- Local communities
- Non-governmental organizations
- Aboriginal peoples
- Shareholders
- Investors
- Industry partners
- Internal stakeholders

Case Study

Project: Confidential Oil Sands Project (2009) **Customer: Confidential**

IDENTIFY EVALUATE DEFINE EXECUTE OPERATE

<u>Issues</u>

Heavily scrutinized project -> significant number of commitments to environment and sustainability.

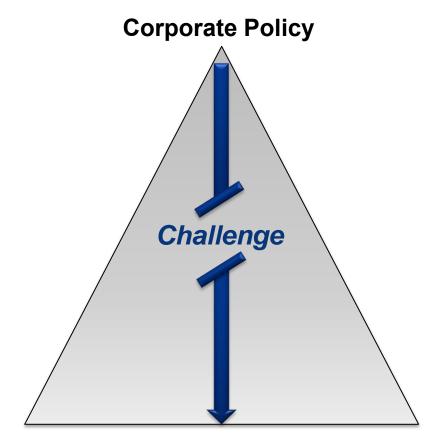
Approach

- Completed and managed a register of all commitments and obligations to regulators and stakeholders
- Identified material commitments not being addressed in design, and suggested actions/deliverables to bridge this gap.
- e.g. the project will utilize the BATEA principle in establishing project emission goals -> influences Technology Selection

Value Provided

- Active and ongoing management of non-technical risk through deliverables
- Identified >1800 commitments of which
 >20 were previously undocumented and
 had a high material impact on design
- Ensured regulatory and stakeholder commitments are met
- Identified and implemented valueadding sustainability improvements

Challenge: Corporate Sustainability Goals



"10% improvement in land rehabilitation"

"Improve energy efficiency of our production processes by 35%"

> "6% reduction in GHG emissions per unit of production"

Projects and Operations

****80% reduction in emissions of VOCs**

"Zero significant community impacts"

"Reduce use of drinking water in production processes by 50%"

Deliverable: Opportunities Register

- Register to manage the identification, evaluation and implementation of opportunities that improve project value and help meet corporate goals
- Begins with the definition of sustainability goals for the project
- Communicated to disciplines in workshops to 'brainstorm' opportunities
- Opportunities are evaluated and recommended based on cost / benefit analyses
- Ensures a systematic approach to value improvement identification throughout the project, and alignment to corporate goals

Typical Sustainability Goals:

- Improve energy efficiency
- Optimize water use
- Reduce waste
- Reduce GHG and air emissions
- Minimize footprint
- Protect biodiversity
- Improve social licence to operate

Case Study

Project: Confidential Harbor Development (2012) **Customer: Confidential**

IDENTIFY EVALUATE DEFINE EXECUTE OPERATE

<u>Issues</u>

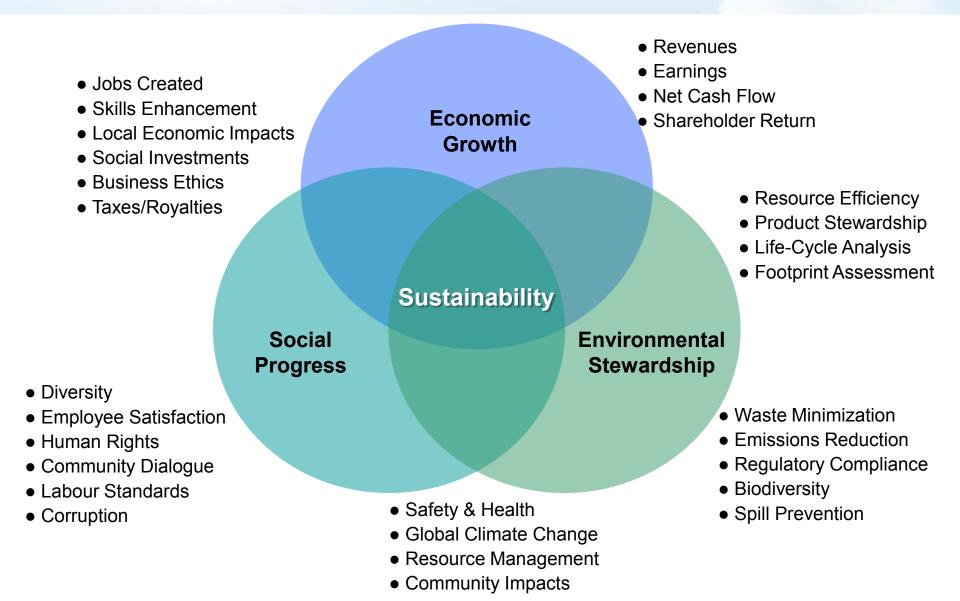
Internal sustainability goals, high existing materials, energy and water costs, expected to increase over time

Approach

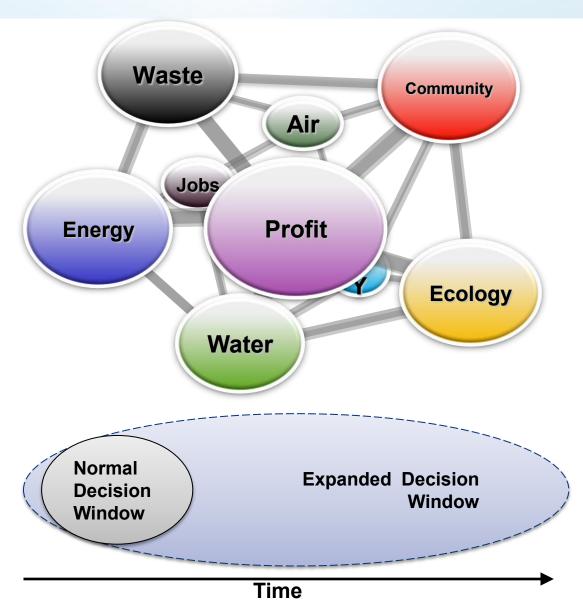
- Defined sustainability goals for the project
- Conducted discipline workshops to communicate goals and brainstorm value improvement opportunities
- Collated and evaluated opportunities for lifecycle cost or risk reduction using the opportunities register
- Implemented sound opportunities, and communicated value-add to Customer.

Value Provided

- Project alignment to Customer goals
- >50 opportunities implemented, saving:
 - CapEx USD 10.9m
 - OpEx USD 75k p.a.
 - CO₂ 1418 metric tons p.a.
 - $H_20 4m$ gallons p.a.
 - Recycled content 133 ac*ft
 - Steel 442 metric tons
 - Concrete 438 metric tons

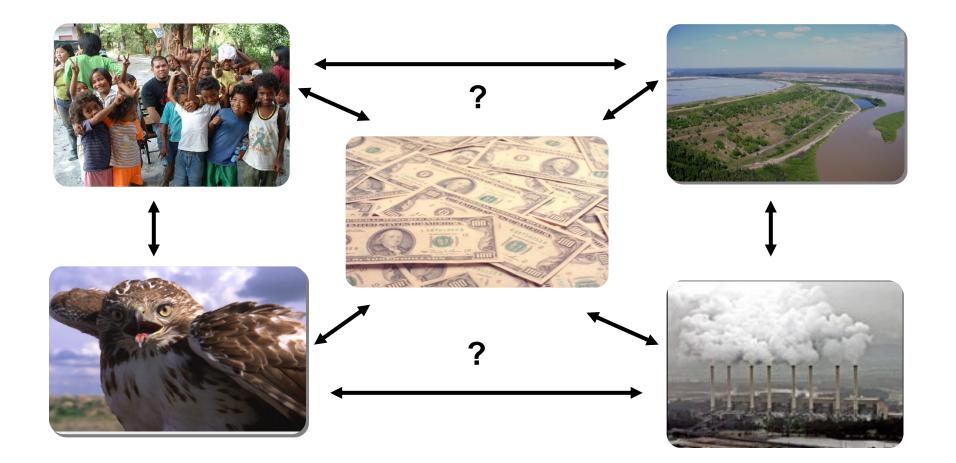


Engineering Deliverables


Discipline	Deliverable	Discipline	Deliverable
PROCESS	Air Emissions Summary	CIVIL / STRUCTURAL	Facility Drainage and Containment Plan
	Carbon Intensity Study	PIPELINES	Constraints Analysis
	Water Balance Report		Rehabilitation of Watercourse Crossings
ENVIRONMENT	Waste Management Plan	ELECTRICAL	Energy Study
	Environmental Protection Plan		Light Pollution Study
	Conservation and Reclamation Plan	MECHANICAL	Noise Abatement and Reduction Specification
PIPING / LAYOUT	Footprint Studies / Layout Optimization	SUSTAINABILITY	Sustainability Assessment
	Pipeline Optimization (Sizing)		Sustainable Procurement Program
SAFETY	HAZID	PROCUREMENT	Materials Reduction Study
	Chemical Storage Locations (HAZOP)	ESTIMATION	Financial Analysis
	MSDS of Hazardous Products		Economic Benefits Analysis

Sustainable Decisions

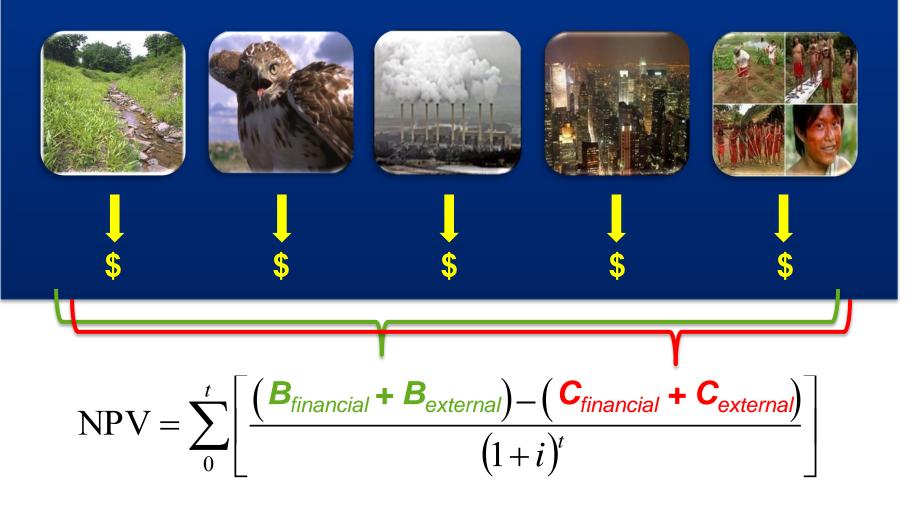
Internal and External Drivers


Business Trade-offs

Sustainable decisions recognize and value the relationships that exist between multiple risks and opportunities ...

over the long term

Challenge



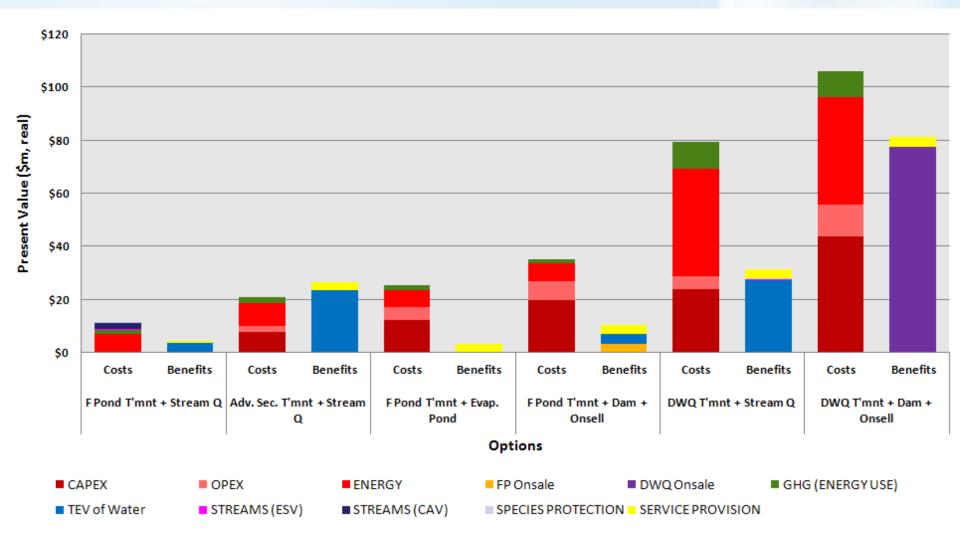
Sustainable Decisions

- ► An EcoNomics[™] options assessment enhances decision quality by quantifying financial and non-financial benefits, costs and risks to inform decision making
- ► Key features:
 - Identify and analyze relevant financial and non-financial costs, benefits and risks through monetization (NPV)
 - Adopt a long term perspective, to help future-proof projects against potential future risks (costs)
 - Utilize dynamic sensitivity analysis to evaluate and overcome uncertainties
 - Produces defensible results based on reliable, objective methodologies and data
 - Improved ability to communicate value of action to stakeholders, incl. regulators

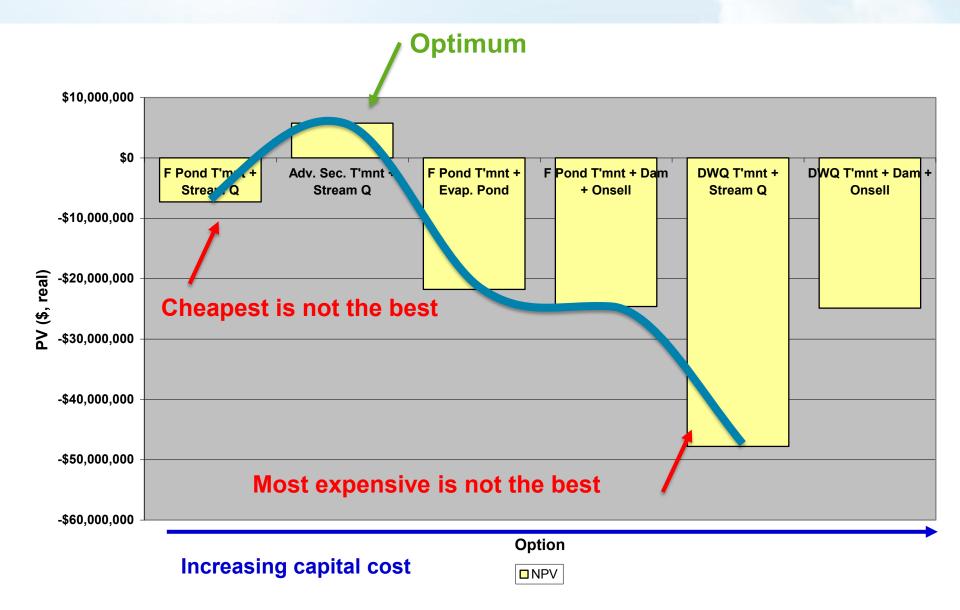
Enhanced consideration of risk in decision making

NON-TECHNICAL RISKS

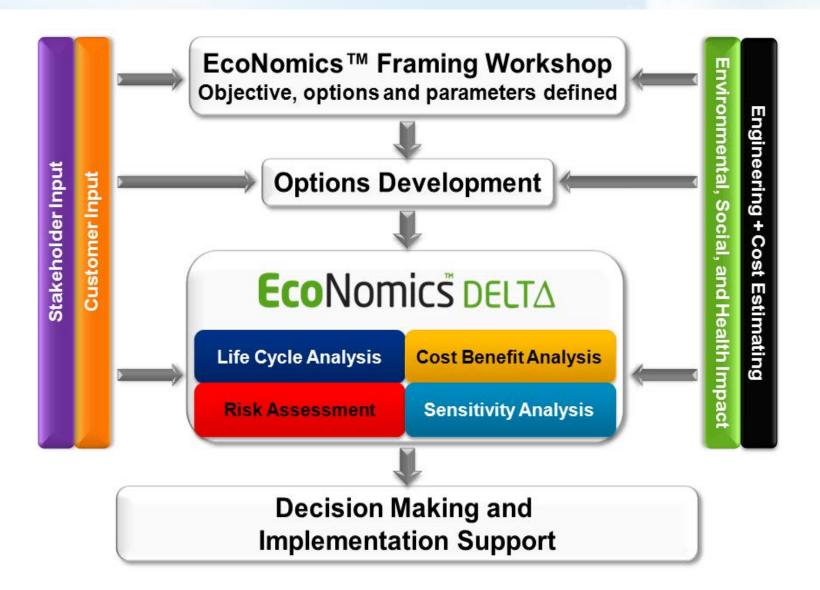
Monetization sources


Potential business risks

- Energy prices
- Water prices
- Greenhouse gases
- Air emissions
- Noise
- Dust
- Biodiversity
- Ecological impacts
- Social issues


Information sources

- National and international market prices
- Market proxies
- Published guidance from
 - UN
 - World Bank
 - US EPA
 - UK HM Treasury
 - EU ExternE-Pol
- Published peer reviewed studies and economic literature
- Bespoke socio-economic studies


Example Outputs

Example Outcomes

Refined Process

LRQA Approved

CERTIFICATE OF APPROVAL

This is to certify that the Quality Management System of

WorleyParsons Services Pty Ltd Australia

has been approved by Lloyd's Register Quality Assurance Limited to the following Quality Management System Standards:

AS/NZS ISO 9001:2008

The Quality Management System is applicable to:

Provision of EcoNomics[™] Assessment services encompassing: scope framing, data collection, analysis and interpretation, using EcoNomics[™] Assessment Process, including the DELTA toolset, as a basis for monetising the value of internal (project) and external (environmental and social) risk factors across asset lifecycle, allowing project options to be compared on a like for like dollar basis over a range of sustainability objectives and possible future conditions, to support decision-making.

Approval Certificate No. 0942963/50

Original Approval: 09 March 2011 Current Certificate: 09 March 2011

Certificate Expiry. 30 September 2012

Quality Assurance Limited

This document is subject to the provision on the reverse 7.1 Feacurds Seret, London (C3M 48) United Kingdom Registration number 1879/370. The apprend scient spin-application bits (RGA application) and activation processing of an Antonio Net 1970. The application of the CRS and inclusion and the IRCA application of antonio science of the Antonio Network (RASA). The application of the CRS and inclusion of the IRCA application of the Antonio Section of Antonio Network (RASA). EcoNomics[™] Assessment is a rigorous, gated process

- Externally audited by Lloyd's Register Quality Assurance
- Approved as a process under our ISO 9001 qualification
- Guided by WorleyParsons' own rigorous internal quality assurance and review protocol
- ► EcoNomics[™] DELT∆ software has been independently validated by IV&V

Case Study

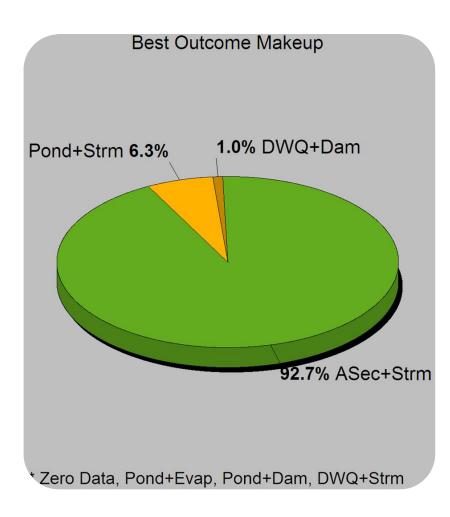
Project: Treated Water Disposal (2009) **Customer: Water Corporation**

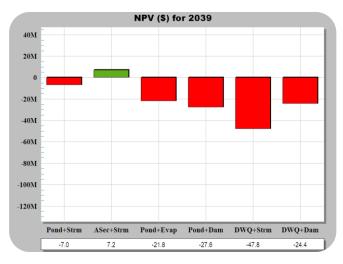
IDENTIFY **EVALUATE** DEFINE EXECUTE OPERATE

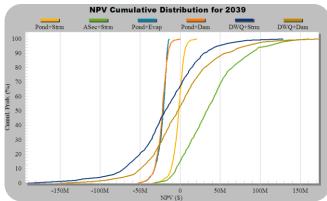
<u>Context</u>

Community and regulator pressure to upgrade to higher cost treatment and disposal methods due to real and perceived impacts of discharges

Approach


- Facilitated framing workshop with multidisciplinary customer input
- Identified 6 potential solutions, from do nothing (cheapest) to zero impact (most expensive)
- Determined financial and non-financial costs, benefits and risks of each option
- Performed 30-year analysis using DELTA to identify and recommend optimum solution


Issues Considered


- CAPEX and OPEX
- Energy usage and costs
- GHG and air emissions (NO_X & SO_X)
- Regional value of water
- Social perception of discharge impacts
- Environmental impacts to waterways
- Likely change in regulation

EcoNomics Delta

Case Study

Project: Treated Water Disposal (2009) **Customer: Water Corporation**

IDENTIFY > EVALUATE > DEFINE >> EXECUTE >> OPERATE >>

Summary

Expanded analysis, explicitly considering commercial, regulatory and community concerns (non-technical risks), over a long-term horizon.

USD \$10 M in NPV benefits identified

*Optimum option vs. BAU (3.5% discount rate, base case conditions)

USD \$14 M in saved CapEx

*Optimum option vs. Regulator Preferred

Results

- Identified the most economic and sustainable option under the majority of possible future conditions
- Results in NPV improvement of USD \$10M (financial and non-financial) when compared to current approach.

Implications

- Agreement between customer and regulator (resolved 2-year deadlock)
- Identified solution saves USD \$14M in **CapEx** when compared to regulator preferred option, with less external impacts than current practice.
- When applied across all sites, potential CapEx reduction benefit >USD \$200M.

Summary

► We collaborate with our customers to **systematically**:

- Identify and manage the full suite of business risks that may impact their projects and operations
- Bridge the gap between their commitments to stakeholders and project delivery
- Ensure projects are aligned with their corporate sustainability goals
- Support decision making where trade-offs exist between technical, social, environmental and commercial performance

WorleyParsons

resources & energy