Phytoremediation of nitrate impacted soil and groundwater at a fertilizer facility in central Alberta

> Kelly Anne Kneteman MSc, AIT, BIT Matrix Solutions Inc.

University of Alberta - 2012

Effects of Nitrate Contamination

- Toxic to humans
 - Limit in drinking water 10 mg/L NO₃ (USEPA)
- Water quality issues
 - Accelerated eutrophication
 - Aquifer contamination
- Soil quality issues
 - Increased electrical conductivity

Nutrients and EC

- Plant available nutrients are in the form of salts
- Ions in solution conduct electricity

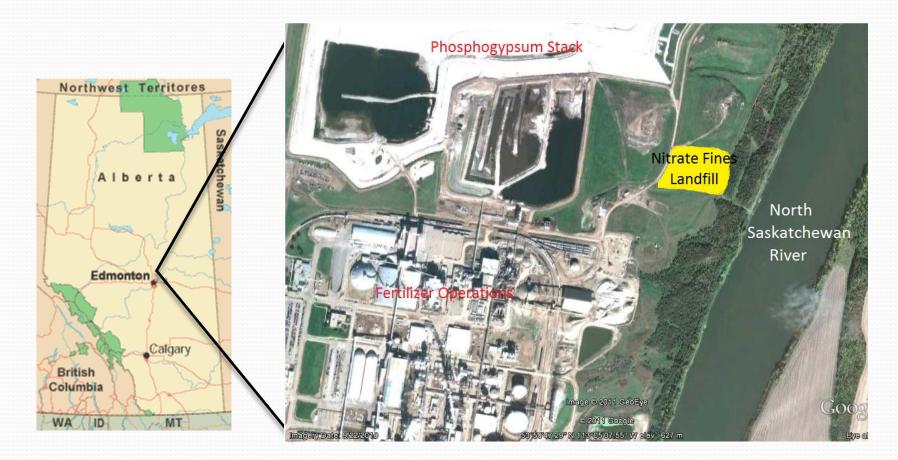
• EC used to represent soil salinity

Why Phytoremediation?

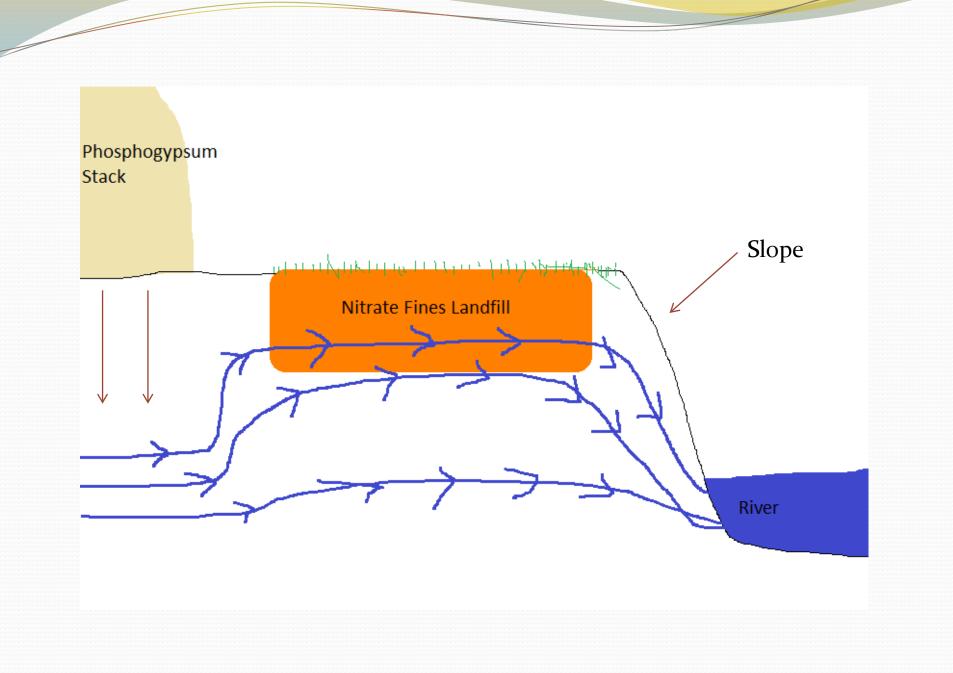
- Uses green plants to remediate impacted environmental media
- In situ or ex situ
- Cost effective
 - Low ongoing operation and maintenance costs
- Increased soil quality
- Driven by solar energy

Why Phytoremediation?

- Positive public perception
- Versatile
 - Treat range of soil types
 - Surface and groundwater
- Can be coupled with more aggressive conventional treatments


Limitations

- Not successful if soil conditions or contaminant concentrations/characteristics phytotoxic
- Slower than some alternatives
- Seasonally dependent


Phytoremediation of Nitrogen

- Plant uptake of nitrogen Mass Flow
 - Transpirational water uptake by plants
 - Water evaporation at soil surface
 - Percolation of water within soil profile
- Leads to movement of ions

Background - Nitrate Fines Landfill

Groundwater N concentrations up to 24,000 mg/L NH₄⁺ and 7,000 mg/L NO₃⁻

Research Objectives

- Determine viability of using Okanese poplar, willow, alfalfa and AC Saltlander grass to remediate nitrogen impacted soil and groundwater.
- Specific research objectives:
 - Evaluate which plant type most effective in removal of excess nitrogen compounds from impacted soil and groundwater.
 - Quantify upper limit of plant nitrogen tolerance.
 - Determine feasibility of using fertilizer impacted groundwater as an irrigation source.

Methodology

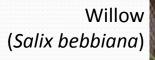
- Initial soil and groundwater sampling
 - EM/ERT survey
 - GW monitoring wells
 - Geoprobe

Geophysical Survey

Easting (m)

1275 1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 1550 1575 1600 1625 1650 1675 1700 1725 1750 1775 1800 2375 2400 2425 2450 2475 2500 CONCRETE BLOCK CL03 AGLO Northing (m) 2225 2250 2275 2050 2075 2100 2125 2150 2175 00-7-02-IO-REMEDIA 1275 1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 1550 1575 1600 1625 1650 1675 1700 1725 1750 1775 1800 Note: The coordinates for the landfill boundary were taken from Stantec 2001. **Terrain Conductivity** 101 103 106 108 110 113 115 118 120

WorleyParsons 2010


Vegetation Selection

Okanese poplar 2403 (Walker x *P. xpetrowskyana*)

> AC Saltlander (Agropyron spicatum x Agropyron repens

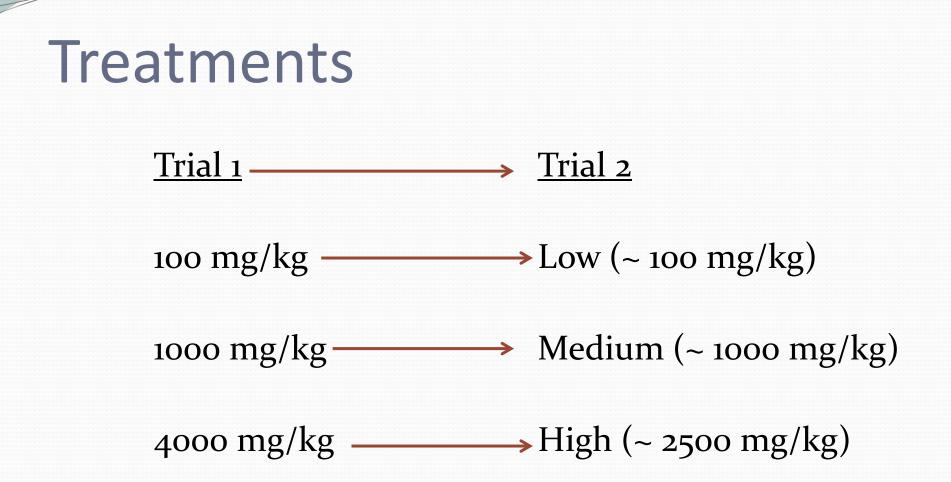
Alfalfa (*Medicago sativa var.* AC Nordica)

Phytoremediation of Nitrogen Impacted Soil

Objectives

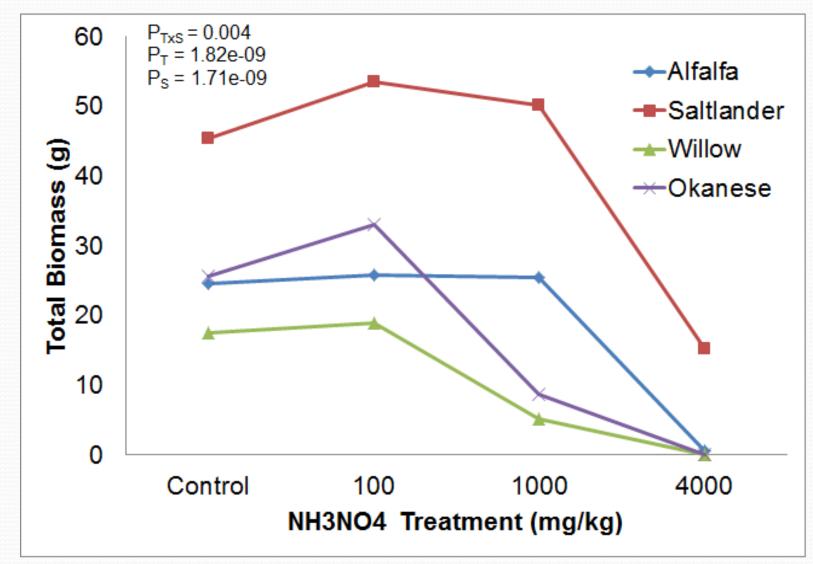
- Characterize growth and survival for each plant type in nitrogen impacted soils.
- Identify an approximate upper limit of soil EC tolerance for each vegetation type.
- Investigate whether soil constituents other than nitrogen present in the landfill soil would effect plant growth.
- Determine which plant types are most efficient in the removal of excess soil nitrogen.
- Quantify the nitrogen balance within the environmental growth chamber system.

Trial 1 - Controlled Addition of NH₄NO₃ to Loamy Sand


Treatments

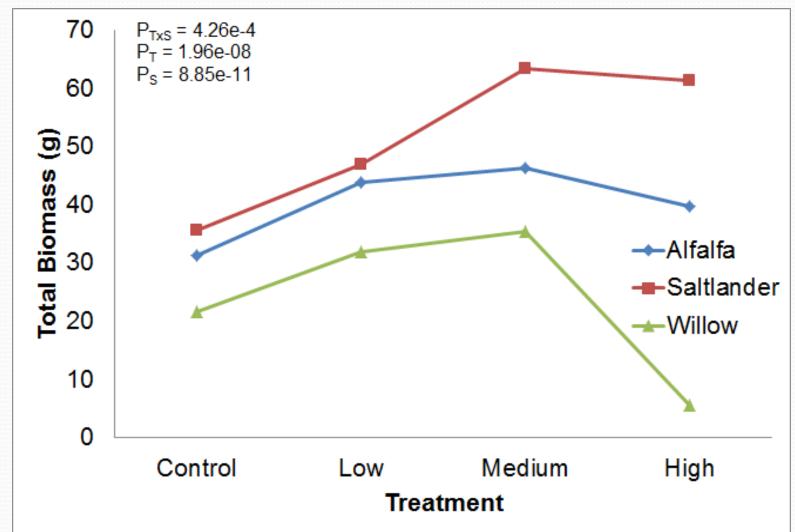
- Control 23.39 kg/ha
- 100 mg/kg NH₃NO₄ 170 kg/ha
- 1000 mg/kg NH₃NO₄ 1493 kg/ha
- 4000 mg/kg NH₃NO₄ 5903 kg/ha

** Total Soil Mineral N


Trial 2 – Excavation and Remediation of Landfill Soil

Results

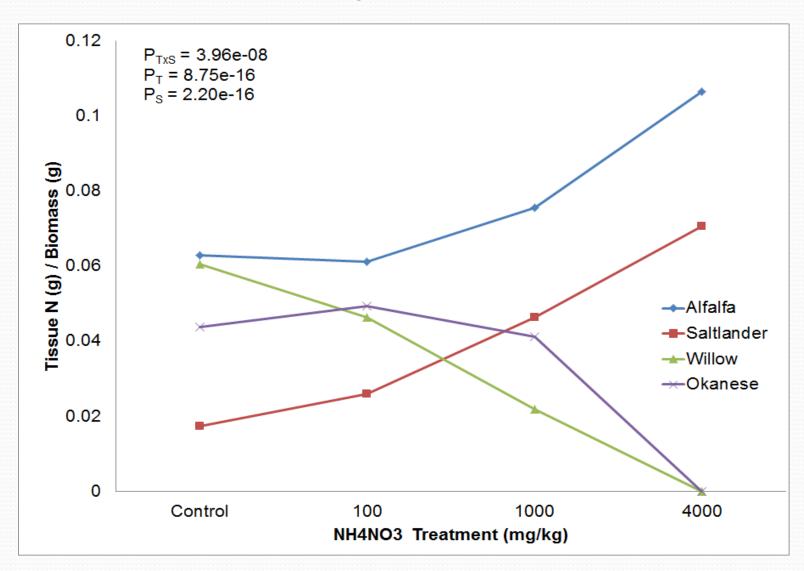
Trial 1 - Tissue Biomass

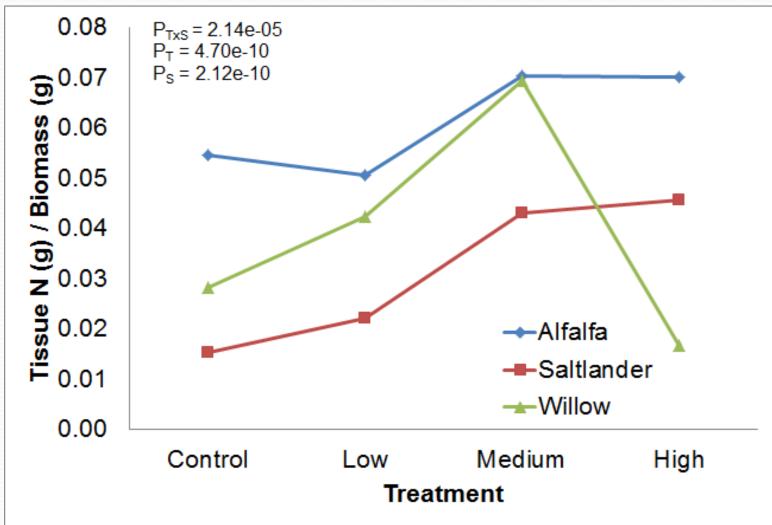


Willow – 1000 mg/kg NH4NO3

Willow - Control

Trial 2 – Tissue Biomass



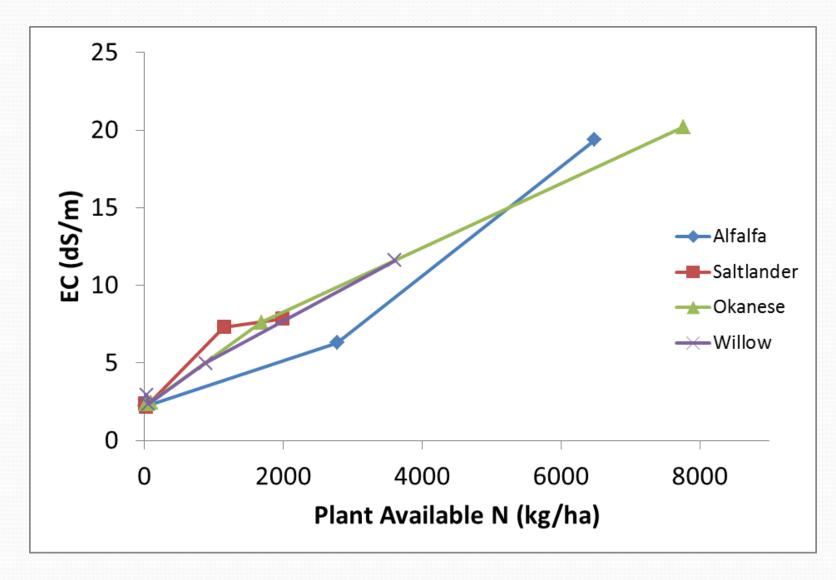

Biomass

- Similar trends in willow and Okanese, and in alfalfa and Saltlander
 - Similar mechanisms for salinity tolerance?
 - Woody plants osmotic adjustment
 - Alfalfa and grass species ion exclusion

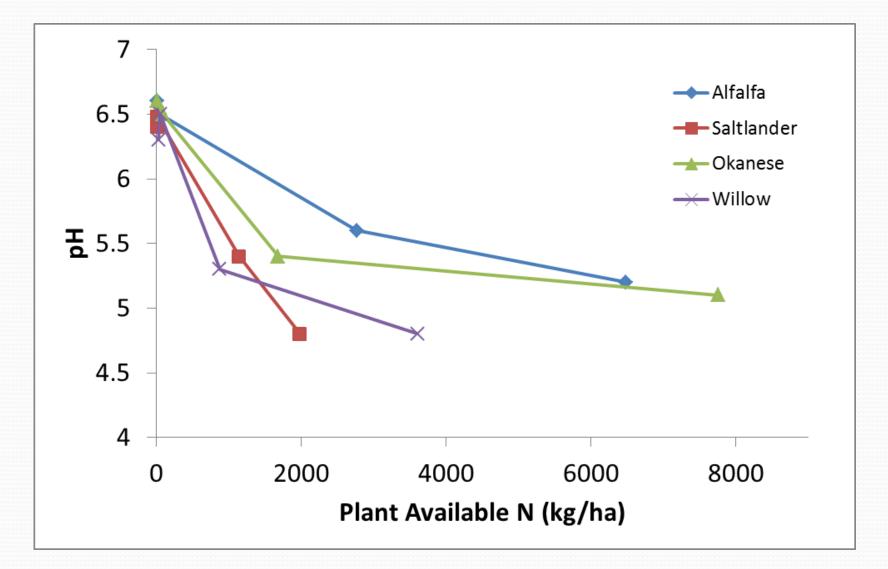
Trial 1 - Plant N Uptake

Trial 2 – Plant N Uptake

Plant N Uptake


• Willow and Okanese not capable

of adapting well to saline conditions


- Physiological drought
- Decrease N uptake with increased EC
- Saltlander and alfalfa more tolerant

Trial 1: Post Trial Soils - EC

Trial 1: Post Trial Soils – pH

Nitrogen Balance

 $\Delta N_a = N_f - N_i = NH_4NO_3$ addition + mineralization – plant removal – other losses

Rearranging results in the following relationship:

[mineralization - other losses] = $\Delta N_a - [NH_4NO_3 addition - plant removal]$

* ΔN_a = Plant Available N, N_f = N final, N_i = N Initial

Nitrogen Balance Trial 1

-		• N = N _f -	NH ₄ NO ₃		[NH4NO3 Addition	[Mineralization - Other
Variety	Treatment	Ni	Addition	Plant Uptake	- Plant Uptake]	Losses]
		(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)
Alfalfa	Control	-8.04	0.00	10.29	-10.29	2.25
	100 mg/kg	-121.07	147.00	10.09	136.91	-257.98
	1000 mg/kg	-541.29	1470.00	12.48	1457.52	-1998.81
	4000 mg/kg	580.27	5880.00	23.82	5856.18	-5275.91
Saltlander	Control	-12.44	0.00	2.77	-2.77	-9.67
	100 mg/kg	-155.97	147.00	4.11	142.89	-298.86
	1000 mg/kg	-635.37	1470.00	8.02	1461.98	-2097.35
	4000 mg/kg	-3921.30	5880.00	14.39	5865.61	-9786.92
Okanese	Control	-3.47	0.00	8.61	-8.61	5.14
	100 mg/kg	-101.90	147.00	10.07	136.93	-238.83
	1000 mg/kg	50.48	1470.00	8.57	1461.43	-1410.95
	4000 mg/kg	-79.43	5880.00	0.00	5880.00	-5959.43
Willow	Control	1.77	0.00	12.07	-12.07	13.84
	100 mg/kg	-125.52	147.00	9.82	137.18	-262.71
	1000 mg/kg	-831.54	1470.00	4.42	1465.58	-2297.12
	4000 mg/kg	-2294.57	5880.00	0.00	5880.00	-8174.57

Results - Nitrogen Balance

- N additions/presence positively correlated to plant uptake for alfalfa and Saltlander, but negatively correlated for Okanese and willow
- N additions/presence negatively correlated to [mineralization – other losses] for all plant varieties indicating that the greater the addition of ammonium nitrate the greater the unaccountable nitrogen losses.
- Plant uptake negatively correlated to [mineralization other losses] for alfalfa and Saltlander, but positively correlated for Okanese and willow.

Nitrogen Balance

- N loss greater than plant N uptake
 - High denitrification rates with high soil moisture contents
 - Soil water moderates oxygen diffusion
 - Some immobilization
 - Into microbial biomass due to high N and C excreted from roots

Role of Soil Clay Content?

- Similar trends in both trials
- Biomass development and N uptake overall higher in Trial 2
- Likely due to increased clay content
 - Higher CEC
 - Buffering capacity

Research Summary

- Coping mechanisms of alfalfa and Saltlander against salinity better suited than willow and Okanese poplar
- Phytoremediation may be more applicable to soils with higher clay contents
- N loss, likely due to atmospheric denitrification or immobilization, higher than plant N uptake
- Nitrate impacted groundwater phytotoxic to plants even when diluted

Application to Industry

- May use plants (Saltlander and alfalfa) in areas where nitrate impacts are below phytotoxic limits
- Expose to carbon sources and the atmosphere
 - Denitrification
 - Immobilization
- Saltlander may be invasive

Research Limitations and Future Research

- Better understanding of nitrogen balance
 - Organic N
 - Atmospheric release
- In situ response?
- Only one growing season
- Growth stage effects

Thank you **Questions?**

Trial 1: Control Soil – Baseline Conditions

Analyte	Units	Results
Phosphorus (available)	kg/ha	117.6
Potassium (available)	kg/ha	336.0
Cation Exchange Capacity	meq/100g	18
pН	рН	6.7
Electrical Conductivity	dS/m	2.42
SAR		0.10
% Saturation	%	38
Calcium	kg/ha	932.4
Magnesium	kg/ha	92.4
Sodium	kg/ha	16.8
Potassium (soluble)	kg/ha	16.8
Chloride	kg/ha	42.0
Sulfate-S	kg/ha	84.0
Nitrate and Nitrite-N	kg/ha	23.4

Trial 1: Post trial soil conditions

	NH ₄ NO ₃ Treatment (mg/kg)			
Alfalfa	Control	100	1000	4000
Nitrate-N (kg/ha)	9.80	43.9	1255.8	4965.3
Nitrite-N (kg/ha)	1.59	1.12	0.93	0.98
Ammonium-N (kg/ha)	3.97	4.34	1517.3	1517.5
EC (dS/m)	2.26	2.25	6.30	19.37
pH	6.6	6.5	5.6	5.2
Saltlander				
Nitrate-N (kg/ha)	9.80	14.0	1118.1	1689.3
Nitrite-N (kg/ha)	2.70	2.01	1.68	2.05
Ammonium-N (kg/ha)	0.50	3.22	24.22	290.7
EC (dS/m)	2.38	2.18	7.31	7.85
pH	6.4	6.48	5.4	4.8
Okanese				
Nitrate-N (kg/ha)	13.7	85.4	1675.3	5460.0
Nitrite-N (kg/ha)	1.54	1.35	1.82	0.89
Ammonium-N (kg/ha)	4.71	4.57	6.72	2304.4
EC (dS/m)	2.33	2.47	7.60	20.2
pH	6.6	6.5	5.4	5.1
Willow				
Nitrate-N (kg/ha)	29.4	56.5	877.3	2772.0
Nitrite-N (kg/ha)	1.82	0.84	1.68	1.49
Ammonium-N (kg/ha)	2.29	2.52	3.45	835.3
EC (dS/m)	2.95	2.36	4.97	11.6
pH	6.3	6.5	5.3	4.8

Trial 2- Baseline soil conditions: Nitrate Fines Landfill

		Results			
Analyte	Units	High	Medium	Low	Control
Nitrate-N	kg/ha	7560.0	3108.0	336.0	29.4
Nitrite-N	kg/ha	1.68	4.2	5.88	3.78
Phosphorus (available)	kg/ha	197.4	336.0	176.4	29.4
Sulfate-S	kg/ha	3943.8	1365.0	2944.2	210.0
Ammonium-N	kg/ha	3645.6	1402.8	17.22	24.78
Electrical Conductivity	dS/m	20.4	8.41	5.67	1.11
рН	рН	8.0	7.9	8.4	8.0

Trial 2 – Post trial soil conditions

	Treatment			
Alfalfa	Control	Low	Medium	High
Nitrate-N (kg/ha)	7.93	64.40	2892.3	4340.0
Nitrite-N (kg/ha)	2.38	2.47	1.82	2.33
Ammonium-N (kg/ha)	2.43	0.42	2.75	0.32
EC (dS/m)	0.93	3.80	8.08	10.55
Saltlander				
Nitrate-N (kg/ha)	7.93	4.20	3752.0	6766.7
Nitrite-N (kg/ha)	0.42	0.52	0.43	0.50
Ammonium-N (kg/ha)	0.13	0.00	1.00	0.37
EC (dS/m)	1.56	5.17	10.14	16.19
Willow				
Nitrate-N (kg/ha)	5.13	93.3	1918.0	5138.0
Nitrite-N (kg/ha)	2.71	2.99	2.29	2.52
Ammonium-N (kg/ha)	2.47	0.51	1.26	5141.5
EC (dS/m)	1.06	3.27	6.77	12.45

Groundwater Parameters

Analyte		Units	Results
Ammonia-N		mg/L	19,900
Kjeldahl Nitrogen	Total	mg/L	22,900
Nitrogen	Total	mg/L	32,200
Organic Nitrogen	Total	mg/L	3,000
Orthophosphate-P	Dissolved	mg/L	5,360
Organic Carbon	Total Nonpurgeable	mg/L	42.5
pH			6.92
Temperature		°C	22.4
Electrical Conductivity		µS/cm	111,000
Calcium	Dissolved	mg/L	<40
Magnesium	Dissolved	mg/L	<40
Sodium	Dissolved	mg/L	1,500
Potassium	Dissolved	mg/L	1,500
Iron	Dissolved	mg/L	2.4
Manganese	Dissolved	mg/L	<1
Chloride	Dissolved	mg/L	1,600
Nitrate-N		mg/L	9,300
Nitrite-N		mg/L	<1
Nitrate and Nitrite-N		mg/L	9,300
Sulfate (SO ₄)	Dissolved	mg/L	22,600
Hydroxide		mg/L	<5
Carbonate		mg/L	<6
Bicarbonate		mg/L	13,300
P-Alkalinity	As CaCO ₃	mg/L	<5
T-Alkalinity	As CaCO ₃	mg/L	10,900
TDS	Calculated	mg/L	59,000
Hardness	Dissolved as CaCO ₃	mg/L	<300
Ionic Balance	Dissolved	%	109