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Presentation Topics 

 Technical Approaches 
 Engineered Systems – Case Studies 
 Materials 
 Bioreactors 
 Direct Injection 

 Factors Impacting Performance 
 Amendment Properties and Distribution 
 Utilization of Iron, Sulfate, and Organics 
 Design Considerations – Special Considerations 
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Engineered In Situ Biogeochemical Transformation 

 Chlorinated compounds degraded by abiotic reactions 
with naturally occurring or biogenically-formed reactive 
minerals 

 Abiotic processes typically                                                
do not produce intermediate                           
dechlorination products 

 Alternative or complement to                            
biostimulation using selective                      
Dehalococcoides species 
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Framboidal Pyrite 

Demonstrate an in situ technology capable of sustained degradation of 

chlorinated solvents without accumulation of cis-DCE or VC 

AFCEE Objective 



Three General Approaches 

 Production of reactive iron monosulfide (FeS) 
minerals while limiting  biological activity – “one and 
done” approach (Dover AFB injection; Kennedy et 
al., 2006) 

 Continual production of FeS with high sulfate 
consumption rate (Altus AFB biowalls and 
bioreactors; Lebron et al., 2010) 

 Synergistic approach stimulating both production of 
reactive FeS minerals and biotic dechlorination with 
bioaugmentation (JBPHH bioreactor study; Leigh et 
al., 2011) 
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Engineered Systems – Case Studies 

 Materials 
 Iron Amendments 
 Sulfate Amendments 

 Bioreactors 
 LF05 Bioreactor, JBPHH, HI 
 LF03 Bioreactor, Altus AFB, OK  

 Direct Injection 
 DP98, JBER, AK 
 North Disposal Area,  

LMTA, Hill AFB, UT 
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Sulfate amendments are soluble (up to 26,000 mg/L) and 
migrate with groundwater flow, but dissolution rate may 
vary (anhydrous versus hydrated forms) 

Potential Sulfate Amendments 
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Material 
(most common form) 

Percent 
Sulfate 

Percent 
Iron 

Notes 

Ferrous Sulfate (heptahydrate) - 
FeSO4 • 7H2O 

35% 20% Soluble 

Magnesium Sulfate (heptahydrate) - 
MgSO4 • 7H20 

39% 0% Soluble - Epsom Salt 

Calcium Sulfate (dihydrate) - 
CaSO4 • 2H20 

56% 0% Moderate Solubility - 
Gypsum 

Sodium Sulfate (decahydrate) - 
Na2SO4 • 10H20 

30% 0% 
 

Highly Soluble 

Percent by weight in hydrated form 

Ferrous Sulfate 
(FeSO4•7H2O) 



Solid iron amendments have a broad range of bioavailability 

– ranging from 250 to 25,000 mg/kg 

Potential Iron Amendments 
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Material 
(most common form) 

Percent 
Sulfate 

Percent 
Iron 

Notes 

Crushed or Powdered Hematite - 
Fe2O3 

0% 68% Natural or Synthetic 
(pigment) 

Crushed or Powdered Magnetite – 
Fe3O4 

0% 
 

67% Natural or Synthetic 
(pigment) 

Ferrous Chloride (anhydrous) - 
FeCl2 

0% 34% Soluble (corrosive - low 
pH) 

Ferrous Lactate - 
Fe(C3H5O3)2 

0% 28% Soluble – Food Additive 

Ferrous Sulfate (heptahydrate) - 
FeSO4 • 7H2O 

35% 20% Soluble 

Powdered Hematite 
(Fe2O3) 



LF05 DNAPL Source Bioreactor, JBPHH 
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High Iron Native Basalt Sand 



Plan View of Hickam LF05 Bioreactor 
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Groundwater Flow 

Data Shown 

Recirculation 
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96% reduction in total 
molar concentration of 
 chloroethenes 
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95% reduction in total 
molar concentration 
of chloroethenes 



Contrast to MW-04 for a Prior Bioremediation Pilot 
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LF-03 Recirculating Bioreactor, Altus AFB, OK 
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 Solar-powered 
recirculating 
bioreactor – built in 
November 2003 

 Emulsified 
vegetable oil 
(EVO) and ferrous 
sulfate injected in 
May-June 2010 
 



LF-03 Injection – EVO + Ferrous Sulfate 
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Ferrous Sulfate Product 

Direct Injection into Bioreactor Frozen Mulch Sample 

Mixed w/ GW + AquaBufpH™ 



Cumulative and Average Daily Flow 
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Sulfate Loading/Consumption Rate Over Time 
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Molar Concentrations of CAHs Over Time at SW3 
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Molar Concentrations of Chloroethenes and Ethene  
in Deeper Zone Beneath Bioreactor 
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Cumulative Mass Removal 
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Influent versus Bioreactor Concentrations 

Compound Influent  
(May 
2010) 

Within 
Bioreactor 
(May 2010) 

Within 
Bioreactor 
(May 2011) 

Percent 
Reduction 
(May 2010) 

Percent 
Reduction 
(May 2011) 

 

TCE (µg/L) 3,600 183 2.6 95% 99.7% 

cis-DCE (µg/L) 2,300 725 169 69% 91% 

VC (µg/L) 80 50 174 38% +2.3% 

Ethene (µg/L) 9 3.3 29 Decrease Increase 

Total Molar 
Chloroethenes 
(nmol/L) 

52,900 9,890 4,800 81% 85% 
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May 2010 and May 2011 (1 mo. pre- and 11 mo. post-injection) 

Dechlorination efficiency for TCE, DCE, and  
Total Molar Chloroethenes improved after injection 



Case Study: DP98, JBER, Alaska 
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Direct-Push Injection Test Cell No. 1 
(May 2010) 



DP98 Test Cell Scenarios 

Site/Location Amendments 
 

Notes 

Test Cell No. 1 EHC® Control Tight silty clay with silty 
sand layers, low to 
moderate GW flow 

Test Cell No. 2 Gypsum, Hematite, Emulsified 
Vegetable Oil (EVO) 

Tight silty clay with silty 
sand layers, low to 
moderate GW flow 

Test Cell No. 3 Ferrous Sulfate with EVO Injected in former 
bioremediation pilot 
test 
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A buffered EVO product was used to stabilize pH 



Chloroethenes at Test Cell No. 2 
(EVO + Hematite + Gypsum) 
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Contrast with 2005 Biostimulation with EVO 
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North Disposal Area, LMTA, Utah 
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TCE Plume in 2007 



LMTA Performance Objectives 

 Generate FeS up to 1,000 to 3,000 mg/kg 
 Enhance rates of degradation by an order of magnitude 

or more over natural rates 
 Reduce total molar concentrations by over 90 percent (no 

increase in cis-1,2-DCE or VC) 

Soil cores before injection, 
LMTA, Utah 

Soil cores 6 months after 
injection, LMTA, Utah 
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Ferrous Iron, Sulfate, and Sulfide at LM-679 
in Test Cell No. 1 (Ferrous Sulfate + EVO) 
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Ferrous Iron, Sulfate, and Sulfide at LM-683 in 
Test Cell No. 2 (Powder Hematite + Mg Sulfate) 
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Chloroethenes at Test Cell No. 1 
(Ferrous Sulfate w/ EVO) 
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Dissolved Organic Carbon in NDA Test Cells 
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Factors Impacting Performance  

 High sulfate consumption rate is desirable 
 Substrate type should behave like amendment type 

(soluble with soluble and solids with solids) 
 Utilization rates – in general soluble sulfate 

reduction will be greater than solid phase iron 
reduction 

 Mineral saturation/super saturation states for iron 
sulfide minerals (geochemical modeling) 
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Slow release substrates such as EVO are not 
a good fit with soluble amendments 



Factors Impacting Performance (continued) 

 Adequate groundwater mixing – nucleation versus crystal 
growth 
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Pyrite Framboids with high surface area Large pyrite grain with low surface area 



Design Considerations 

 Limit substrate to avoid over stimulation of biological 
processes, yet provide for continual production of fresh 
FeS minerals 

 Use conservative tracers to confirm utilization of soluble 
sulfate and ferrous iron amendments 

 Configurations suitable for multiple injections or 
recirculation allow the greatest potential for optimizing the 
ratio of organic substrate to sulfate to iron 
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Given the challenges to enhancing abiotic processes without significant biotic 
dechlorination, a synergistic approach optimizing biogeochemical processes 
along with bioaugmentation may be an optimal approach. 

Optimal Approach 



Special Considerations 

 Co-contaminants such as nitrate and heavy metals 
 Low pH, poor buffering capacity 
 Very high or very low rates of groundwater flow 
 Overstimulation of biotic dechlorination 
 Sites with high initial populations of dechlorinators (sites 

with high concentrations of DCE, VC, or DCA) 
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 Buffering products for pH control 

 Bioaugmentation for sites with DCE, VC, or DCA  

Mitigation Measures 
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Questions and 
Discussion 

Comparison of Approaches to 
Engineered 
 In Situ Biogeochemical 
Transformation 
 of Chlorinated Solvents 
 
Bruce M. Henry, PG 
19 October 2012 
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