

SOLIDIFICATION/STABILIZATION CEMENT ADDITIVE and TEST METHOD

PRESENTED BY:

Matt Geary CETCO Remediation Technologies

AGENDA

- What is Solidification/Stabilization (S/S) ?
- ► History of S/S
- EPA Superfund Data Regarding S/S Technologies
- Materials for Solidification/Stabilization
- Treatability Mix Studies
- Case Study

What is Solidification/Stabilization (S/S)?

- S/S treatment protects human health and the environment by immobilizing hazardous constituents within treated material
- Involves mixing a binding agent into contaminated media such as soil, sediment, sludge or industrial waste
- Physical and chemical changes to the treated material

History of S/S Treatment Uses

EPA-542-R-07-012

						ounds	ntenet	latile	bicides olati	le	
EPA-542-R-07	-01'	2	.ect	å So a	ned con	netryice	ated "	and he	senit /		
			A Prov		Servic en	e ^{re} /o	dennds/	. 8 ²⁵ . 1 ²⁶	unds vola	nd ⁵ ed	
		108			st solet	- man	8 ⁰¹ /31	cit ogene	atedmo	atinat	nd
		num	Jen carb	no lati	er &	AND CO	ie Pere		Sile e la		oids
Technology	LOF	× /20	Ndro Othe	til der	en our	Satt Or	Sar Oak	sall Hard	at Pough	Meretar	
Bioremediation	113	37	51	33	33	24	17	22	2	5	
Chemical Treatment	29	1	2	3	4	1	4	12	4	13	
Multi-Phase Extraction	46	9	3	11	6	4	8	18	1	1	
Electrical Separation	1	0	0	0	0	0	0	1	0	0	
Flushing	17	3	5	5	5	1	3	11	0	5	
Incineration	147	27	41	33	23	36	34	52	36	6	
Mechanical Soil Aeration	ר 1	0	0	3	1	0	1	7	0	0	
Neutralization	15	2	0	0	0	0	0	0	0	6	
Open Burn/											
Open Detonation	4	0	1	0	0	0	0	0	0	0	
Physical Separation	21	4	2	1	0	3	0	0	4	5	
Phytoremediation	7	1	2	2	2	1	1	4	0	4	
Soil Vapor Extraction	255	15	31	107	51	3	33	217	1	0	_
Soil Washing	6	1	1	0	0	2	0	0	1	2	
Solidification/											
Stabilization	217	17	18	13	13	16	7	20	35	180	
Solvent Extraction	4	2	1	0	1	1	0	2	2	1	
Thermal Desorption	71	21	17	24	15	8	12	33	16	0	
In Situ									-		
Thermal Treatment	14	5	0	2	0	3	3	8	0	0	
Vitrification	3	0	0	1	1	0	1	3	2	1	
Total Projects	977	145	175	238	155	103	124	410	104	229	

Contaminant Types Treated by S/S (EPA-542-R-00-010)

S/S Binding Agents and Additives

- Portland Cement
- Cement kiln dust
- Slag
- Fly ash
- Organoclay
- Bentonite

Portland Cement

Description

A generic material produced by over 50 companies at over 125 plants in the U.S. and Canada. The principal use of cement is in concrete for construction. Concrete is a mixture of Portland cement, aggregates (gravel and sand), and water. The cement used in S/S is the same as that used in concrete.

Application and Benefit

Portland cement is used in waste management as a binding reagent and is mixed into contaminated media or waste in order to immobilize contaminants within the treated material.

Comments

- Manufactured to ASTM specification which ensures uniformity.
- Used to treat the greatest variety of wastes since the 1950's.
- Readily available in all parts of U.S. and Canada. It is economical and can be purchased in small or bulk quantities.

Sodium Bentonite

Description

High swelling clay composed primarily of the mineral sodium montmorillonite.

- Application and Benefit Uses as an additive to Portland Cement to lower hydraulic conductivity.
- Comments
- Manufactured to API specifications to assure consistency.
- Available in large quantities from bentonite manufacturers and in small quantities from distributors.

Organophilic Clay

Description

Clay that is specially treated to convert it from hydrophilic to organophilic.

Application and Benefits

Uses as an additive to Portland Cement to reduce organic leaching and aid curing of cement.

Comments

- Manufacturer should provide manufacturing quality control, including treat content (ASTM D7626), to assure consistency.
- Material used in construction should be same as material tested in treatability study to help assure effectiveness.

USEPA Solidification/Stabilization Documents

- USEPA Handbook of "S/S of CERLA & RCRA Wastes; Physical Tests, Chemical Tests, Technology Screening, Field Tests", EPA/625/6-89/022, Pg. 3-3. "Organophilic Clay-based S/S Processes: Recent investigations.. indicate that these organophilic binders truly bond with organic wastes."
- USEPA S/S Technical Resource Document, EPA/530/R-93/012, Pg. 4-13: "For certain organics, organophilic clay may improve cement-based or pozzolanic process performance."
- USEPA Technology Performance Review: Selecting and Using Solidification/Stabilization Treatment for Site Remediation, EPA/600/R-09/148, Pg. 2, "In applying S/S for treating organic contaminants, the use of certain materials such as organophilic clay..., either as a pretreatment or as additives in cement, can improve contaminant immobilization in the solidified/stabilized wastes."

S/S Typical Performance Criteria

- Unconfined Compressive Strength: 50 psi
- Hydraulic Conductivity: 1 x 10⁻⁷ cm/s
- Leachability (varies based upon site risk assessment)

S/S Process: Feasibility and Mix Design Tests

Physical Testing

- Hydraulic Conductivity/ Permeability
- Unconfined Compressive Strength measure of free liquids & durability
- Freeze-Thaw & Wet-Dry Durability
- Paint Filter Test (PFT) free liquids
- Moisture Content
- Density

Solidified samples prepared for strength and permeability testing

Permeability testing apparatus

Unconfined compressive strength

S/S Process: Feasibility and Mix Design Tests

Chemical (Leaching)

- Toxicity Characteristic Leaching Procedure (TCLP)
- Synthetic Precipitation Leaching Procedure (SPLP)
- Semi-Dynamic Leach

Semi-dynamic Leaching Test

- **US EPA Method 1315 (expected to be adopted by end of 2012)**
- Determines mass transfer release rates of COC from low-permeability material under diffusion controlled release conditions.
- One of four leaching test methods of the LEAF Project, a collaboration of:
 - USEPA Office of Research & Development and Office of Solid Waste
 - Vanderbilt University
 - Energy Research Centre of the Netherlands (Petten, The Netherlands)
 - DHI (Horsholm, Denmark)

Flow through untreated soil versus treated soil

Semi-Dynamic Leaching Procedure

CASE STUDY

Virginia Wood Treating Site Treatability Study Mix Design

MIX ID	Total Reagent Dose	Portland-Slag Dose	Bentonite Powder Dose	GAC Dose	OC Dose	Basis	
7	9.5	8	0.5	0		Low OC dose	
8	9.5	8	0.5	1	0	Mid GAC Dose	
9	10.5	8	0.5	0	2	Mid OC dose	
10	10.5	8	0.5	1	1	Mid GAC/Low OC dose	
11	12.5	8	0.5	0	4	High OC dose	
12	16.5	12	0.5	0	4	Increased cement, High OC dose	

All data in wt%

Virginia Wood Treating Site Semi-Dynamic Leaching Study

Figure 4: Day-averaged PCP concentration profiles in close proximity to S/S-treated contaminated soil surface.

Summary

- Cement-based Solidification/Stabilization is a proven technology.
- Bentonite can be added to help decrease hydraulic conductivity.
- Organophilic clay has been shown to be an effective additive for sorbing organics.
- New leachability tests show that organophilic clay can be effective at low doses of 1-2%.