

Soil Invertebrate Distribution in Sub-Arctic Soils: a Field Study

Gemma Leighton-Boyce, Ph.D., P.Ag., Senior Environmental Scientist Jeff Batigelli (Stantec), Chris Fraser (Environment Canada)

RemTech 2012

Significance of Soil Invertebrates in Contaminated Site Assessment

Table 1. Receptors and Exposure Pathways for the Land Use Categories Considered in the Derivation of Environmental Soil Quality Guidelines

Route of Exposure	Agricultural	Residential/ Parkland	Commercial	Industrial
Soil Contact	Soil Nutrient Cycling Processes, Soil Invertebrates Crops/Plants, Livestock/Wildlife	Soil Nutrient Cycling Processes, Soil Invertebrates. Plants, Wildlife	Soil Nutrient Cycling Processes, Soil Invertebrates Plants, Wildlife	Soil Nutrient Cycling Processes, Soil Invertebrates. Plants, Wildlife
Soil & Food Ingestion	Herbivores, Secondary and Tertiary Consumers	Herbivores, Secondary and Tertiary Consumers		
Ingestion of Contaminated Water	Livestock			
Contact with Contaminated Water	Freshwater Life, Crops (irrigation)	Freshwater Life	Freshwater Life	Freshwater Life

Significance of Soil Invertebrates in Risk-Based Contaminated Site Assessment Under Natural Land Uses

What are we looking for ?

Sample collection

- Six sites
- Three test pits per site Soil cores every 5 cm (0-20 cm), thereafter every 50 cm

2 sites Max. depth 3 m

4 sites Max. depth <1m

Heat Extraction & Preservation

Dissecting Scope: Coarse Sorting

Results: Range of Fauna

- Acari or Soil Mite
 - Oribatida, Mesostigmata, Prostigmata

- Collembola or Springtail
 - Entomobryidae, Isotomidae, Hypogastruridae, Neelidae, Onychiuridae, Sminthuridae
- Dominance of Acari (71-93% of individuals) over Collembola (5-25%)
- 'Others' Coleoptera larvae, Diptera, Thysanoptera, Aranaea, Chilopoda, Homoptera, Nematoda, Protura

Results: profile distribution

Results: Profile Distribution at Permafrost Sites

e) Site S11-05

f) Site S11-06

Next steps: Culturing Select Species

Heat extraction

Collembola eggs

Current Surviving Individuals

Mite

Springtail 'long thin'

Springtail 'purple grey'

Springtail 'fat white'

Summary

Knowledge of soil fauna in northern regions	Study findings	Implications for use of generic guidelines	Next steps for Taiga soil fauna
Limited; few studies	Majority of fauna in top 20 cm	Relevance to regional species?	Culturing and method development
Critical component of a healthy soil	Low numbers of fauna reported at 3 m; distinct community?	Application depth?	Guideline development

Environment Canada

Environnement Canada

WorleyParsons

resources & energy