

2012 Remediation - Technologies Symposium

Ex-situ Treatment of Heavy Petroleum Hydrocarbons Via Composting, Biopile, Chemical Oxidation and Soil Washing

Presented by Eric Bergeron, Eng., M.A.Sc. Golder, Montreal October 17-19, 2012

Presentation Outline

- Case study description
- Remediation options (GoldSET)
- Remediation approach
- Laboratory and pilot-scale results
- Conclusions

Project Site Description

- Heavy industrial area
- Former petrochemical activities
- Underground/above ground utilities dismantled
- COCs : PAHs, heavy TPH, BCEE, heavy metals – Vadose zone
- 124 000 m³ of impacted soil

GolderSET – What is the best remediation option?

- Semi-quantitative multi-criteria decision support tool based on the principles of sustainable development
- Balanced, impartial and exhaustive yet simple to use and refer to
- Sustainability "checklist" before undertaking a project

Sustainability

Decision

Support

Tool

Remediation Scenario

- Composting for biodegradable COCs
- Thermal dosorption for non-biodegradable COCs
- Phytoremediation for metals impacted soil

Biopile

- 50-60 \$/m.t.
- not efficient for heavy PAH
- 0.12 mg/kg/day for BCEE
- + Aerobic Daramend :
 - up to 6.5 mg/kg/day for PAH

~30 mg/kg/day for TPH

• 60-80\$/m.t.

Aerobic Daramend (ppm vs day)

7

Golder

Soil Washing with a non-ionic surfactant

1.2 L/kg of soil 1-5% surfactant 80-100 \$/m.t.

Parameters	Removal Efficiency		
	Column Test	Barrel Test	
LMW PAHS	63%	35%	
HMW PAHS	57%	32%	
Total PAHs	60%	34%	
C10-C50	52%	70%	
Removal Rate (mg/kg/day)	1116	1967	

Ozone Treatment

- Dosing: 9 g of O₃ per kg of soil
- Removal efficiency on TPH : ~ 30%
- Phenanthrene (↓ 76%), fluorene (↓ 65 %) and anthracene (↓ 45%), some ↓ three ring PAHs

~ 400 \$/m.t.

Composting

Composting is a process in which organic contaminants are degraded by microorganisms at elevated temperatures under aerobic and anaerobic conditions

- Addition of organic substrate to soil + air + eau (~60% WHC)
- Typical temperature : 40-65 °C (rate of reaction x 2 every 10 °C)
- ↑ thermophilic +mesophilic bacteria
- † solubility of organic carbon, ammonia nitrogen and P
- ↑bioavailability of contaminants

Composting Testing

Several mixes (horse, laying hens, roasters manure and wood shaving) and organic loading (25-75%) were tested

Some Results

60-80 \$/m.t.

	Removal Efficiency		
Parameters	75% organic	50% organic	25% organic
	loading	loading	loading
LMW PAHS	81%	53%	56%
HMW PAHS	34%	31%	41%
Total PAHs	61%	43%	49%
C10-C50	48%	31%	40%
Degradation Rate (mg/kg/day)	55,3	37,6	61,9

Pilot Testing

Respiration rate: 6.7%/hr ~ 100 mg/kg/day

The End

THANKS! QUESTIONS??

