

Common Questions About Chemical Oxidation
Using Modified Fenton's Reagent with Case
Study Answers

Agenda

A few things you wanted to know about Chemical Oxidation but were afraid to ask

- TRIUM's TriOx Process
 - Principles
- Chem Ox Overview
 - Common Questions
 - Case Studies
- Discussion/Questions

TriOx

"Chemical remediation under the principles of ethical science and engineering for integrated remedial technology application and site management."

TriOx

- Specializing in advanced in-situ/ex-situ chemical oxidation
- Focus on oxidation applications for:
 - Groundwater remediation
 - Soil polishing
 - Limited access and deep conditions
 - Various organic contaminants
- Modified Fenton's Chemistry preferred oxidant blend
 - Clean, efficient, no additive residuals

MFR

- Mineralization to CO2/H2O by free radical generation
 - Surfactant enhanced
 - Reaction often creates surfactant effect in soil to make contaminant available in water phase for reaction.
- As single step or part of remedial train approach
- No residual ion signature (H₂O₂₎
- Rapid reaction, quick results
- Oxygenated groundwater conditions, longer term biological advantages

MFR

- All oxidants susceptible to:
 - Scavenging reactions (Fe, Ca, Mn, etc)
 - Imperative to possess knowledge in chelators and catalysts
 - Balance of natural oxidant demand, contaminant levels, and end points
 - Oxidant stability compromise of reaction and application
 - Shorter reaction time = better destruction of light ends, more aggressive reaction, may compromise ROI.
 - Longer reaction time = better destruction of heavy ends, longer, slower injections/applications.

A Few Common Questions or Myths

1. Chem Ox is complex and unreliable

Complex

- True Oxidant reactions are very complex
 - Concentrations and Oxidant Demand
 - High concentrations of any contaminant
 - Free product
 - Highly organic soils
 - Scavenging reactions (Fe, Ca, Mn, etc)
 - Chelators and catalysts
- Success can be achieved with recognition that not all oxidants are created equal or are best for all circumstances.

Unreliable

- True Chem Ox is unreliable if applied poorly
 - ISCO
 - Low saturation
 - Channeling/Fracturing, Low ROI
 - Shallow or poorly backfilled areas
 - EXCO
 - Low saturation
 - Retention time and contact
 - Mixing technique
 - Simply apply via the correct method...
 - Not as easy as it seems, uniqueness to every site

Unreliable

---- Unreliable

Reliable ——

DEFINING

A Few Common Questions or Myths

- 1. Chem Ox is too complex and unreliable
- 2. Geology
 - Doesn't work in fine grained soils
 - Has a low ROI
 - >ROI is always better
 - Has to be fractured into bedrock
 - Only displaces the fluid present

Fine Grained Soils

- True fine grained soils can pose more difficulty
 - Overcome by properly conditioning the injection formations
 - Conditioning means.....
 - STOP thinking that more "force" = better results
 - Use chemical conditioning not necessarily excessive physical force
 - A lower ROI is expected
 - Use injection wells, provides access for multiple consecutive injections
 - Slow and consistent = fast and successful

Fine Grained Soils

- Fracturing
 - Emplace sand
 - In extreme low conductive soil, > ROI for following treatments.
 - Emplace slurries (i.e. zero valent iron, etc).
- For everything else consider that:
 - Fracturing forces path of least resistance, directionally uncontrollable
 - Regardless of oxidant reaction time, a one shot injection via fracturing means that even if you get a large ROI the MFR is probably spent by the time it moves outside the fracture.

Low ROI

- True, improperly or unstabilized oxidant will have a low ROI.
 - If oxidant wastes itself, no unit contact possible
 - Oxidant selection and blending strategy
- True, low volume, non continuous injections will have low ROI
 - Single or small volume application will not contact unit sufficiently to allow dispersion
 - Application strategy and well conditioning

ROI Compromise

- Greater ROI often means longer remedial timeframe
 - Cost/Time balance

	Fractured Bedrock	Fractured Bedrock	Silty Clay
Planned ROI	10	5	2
Actual ROI	>20	>10	>2 (not defined)
Volume	>80,000 m3	>2,000 m3	100 m3
Duration	8 weeks	1 week	3 days
% Complete	60	100	100
Cost	Lowest unit cost		Highest unit cost
Timeframe	<2-3 years	<1 month	<1 week

Bedrock

- True doesn't work if forcibly channeled or poorly emplaced injection intervals
- If contaminant is moving, bedrock has a transport mechanism
 - Proper exposure to unit and conditioning
 - Greater depth does not have to mean greater injection pressure
 - Greater overburden pressure can be overcome with dispersion and oxidant reactions

Displacement

- Slug flow vs Dispersion
 - True, a minor amount may occur at the immediate area of the injection point
 - H₂O₂ is extremely soluble, therefore when injected in low pressures behaves via dispersion
 - Consider that injection volumes often <10% of pore volume, yet ROI can reach 10's of meters
 - Water chemistry changes if displacement was occurring

Displacement

A Few Common Questions or Myths

- Chem Ox is too complex and unreliable
- Geology
 - Doesn't work in Fine Grained Soils
 - Has a low ROI
 - Just because you can, should you (too fast, too slow, large ROI, not always good
 - It displaces the fluid present
- Cannot be field verified

Field Verification

- Only true if no proper point to measure.
 - DO/ORP probes
 - Peroxide test strips or kits, verify concentration
 - Laboratory analysis
- Sample from monitoring wells only.
 - Permanent monitoring wells allow continuous monitoring
 - Verification of ROI and oxidant migration
 - Test performance against perimeter monitoring wells

Field Verification

A Few Common Questions or Myths

- Chem Ox is too complex and unreliable
- Geology
 - Doesn't work in Fine Grained Soils
 - Has a low ROI
 - Just because you can, should you (too fast, too slow, large ROI, not always good
- It displaces the fluid present
- Cannot be field verified
- It doesn't work

Doesn't work

- True sometimes fails to meet target/uneconomical
 - Unknown contamination
 - High organics
 - No minimum saturation
 - Wrong loading or application technique
 - Etc.
- Imperative to know the limitations and be honest that it may not be the right solution

When it didn't work

Location	Depth (mbg)	TPH (mg/kg), (Removal %)		
		Pre Monitoring	Post Monitoring	
1-3	2 to 3	36	209 (-480%)	
1-4	3 to 4	36	1248 (-3367%)	
1-5	4 to 5	1416	1010 (29%)	
4-5	4 to 5	1096	ND (100%)	
7-4	3 to 4	796	767 (4%)	
7-5	4 to 5	377	1104 (-192%)	
9-4	3 to 4	670	525 (22%)	
9-5	4 to 5	6390	1082 (71%)	
10-5	4 to 5	973	ND (100%)	

- Extreme seasonal fluctuations, vadose zone
- Homogeneity and backfill
- Near to sources
- Application Techniques

When it didn't work

	3-Nov-09	18-Nov-09	24-Feb-10
Benzene	<0.0004	<0.0004	<0.0004
Toluene	<u>0.14</u>	<0.0004	<u>0.055</u>
Ethylbenzene	0.0014	<0.0004	0.0009
Xylenes	0.0009	<0.0008	<0.0008
F1 (C6-C10 - BTEX)	0.29	<0.1	<0.1
F2 (>C10-C16)			0.3

- On specific request/design
 - Shallow monitoring well (not suited to injection)
 - Very small volume (shallow and in backfill)
 - Maybe it won't come back...

Does Work - Bedrock

Does Work – Silty Clay

Questions?

More Information:
Call Jevins or BJ at 403-932-5014
www.triuminc.com

