Presentation of the Federal Government SD Analysis Tool Remediation Module – Phase 3

SuRF Canada Workshop - Remtech October 19, 2011, Banff, Alberta

Presented by Sebastien Yelle, PWGSC

Introduction

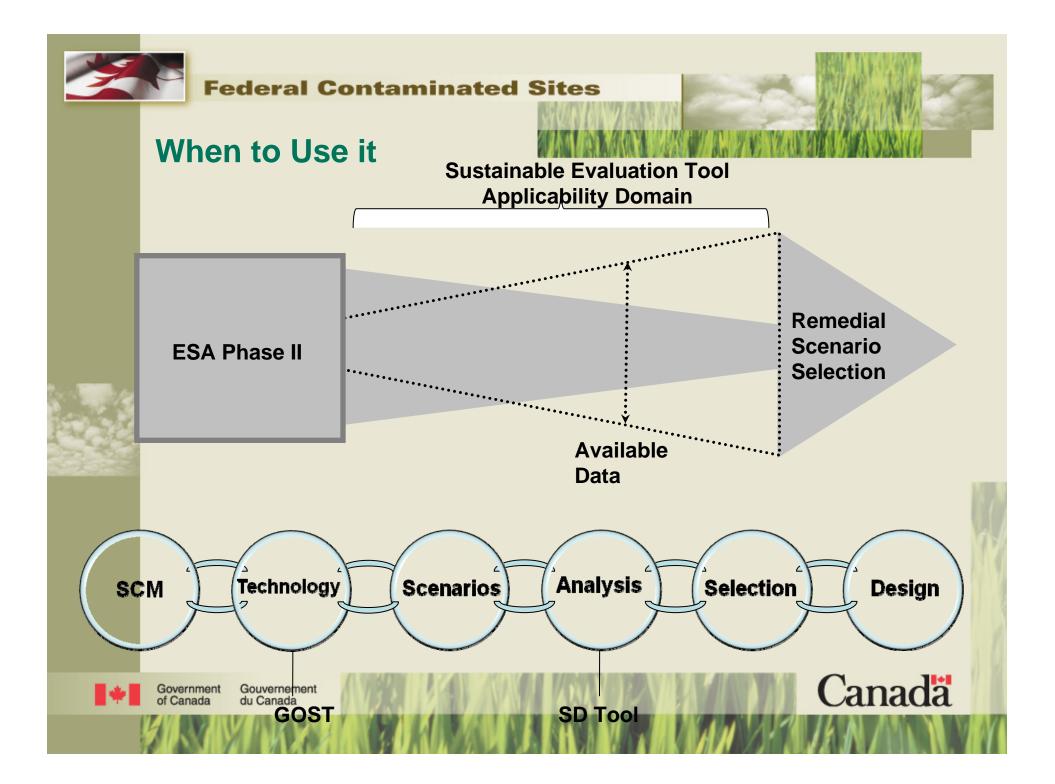
Canada

Mains Objectives of the SD Tool

□ Integrate the three dimensions of SD in the Remedial Technologies Evaluation Process;

Allow the Evaluation Process using Readily Available Data (ESA Phase I and II);

Simplefy Communications of the Evaluation Process to the Different Parties Involved;

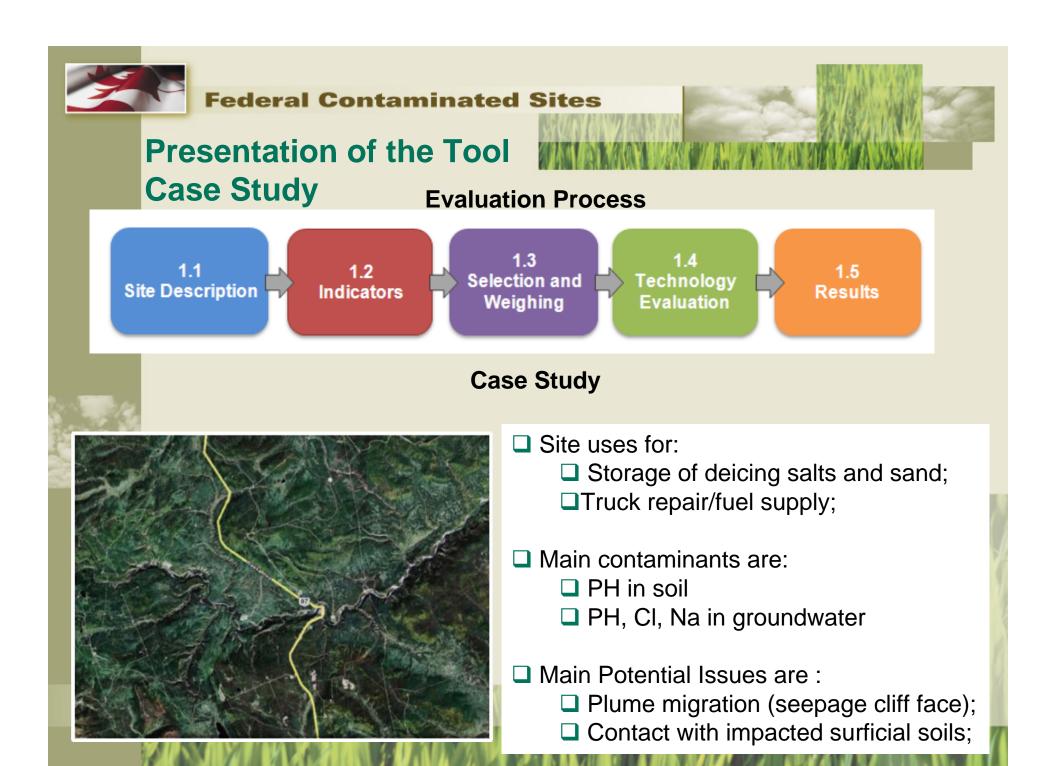

Better Understand Advantages and Limitations of Potential Applicable Remedial Technologies with Respect to SD Principles

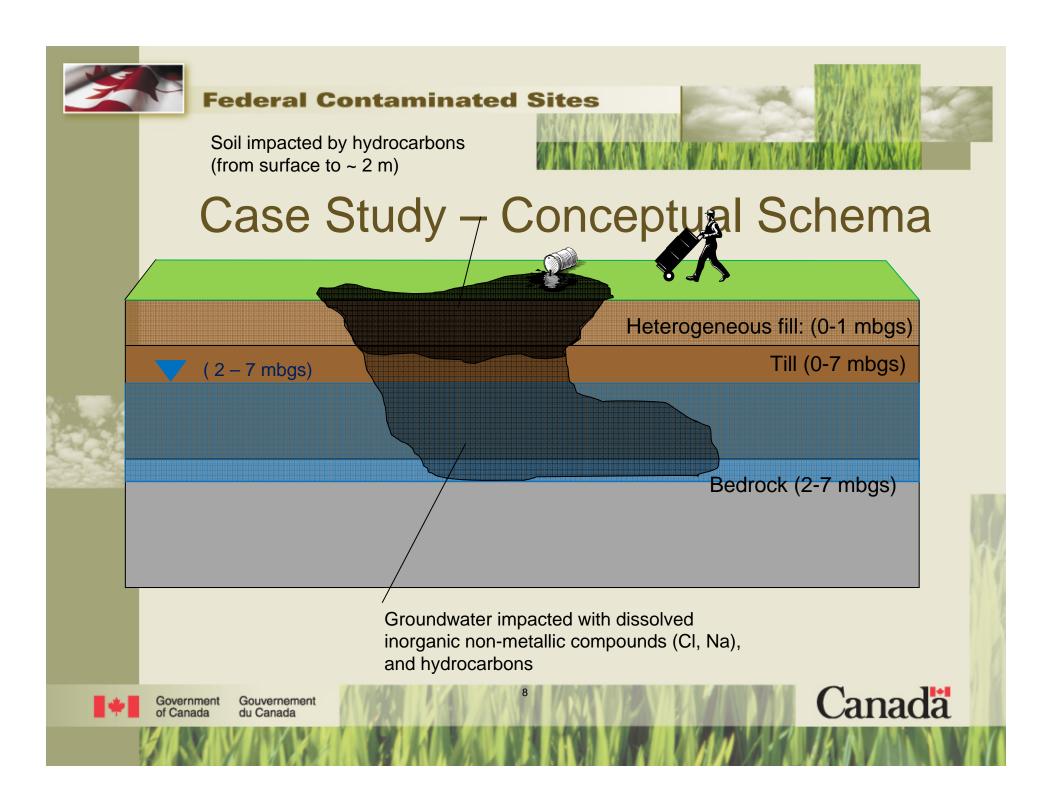
Government Gouvernement du Canada

2007	2008 - 2009	2009 - 2010 2010 - 2011					
GoldSET©	First Generation	Second Generation	Third Generation				
integrate SD principles into engineering projects with regards to the SD aspects: - Environmental - Social - Economic • Used commercially since 2007 worldwide	A literature review supporting the selection of indicators and SD aspects The adaptation of the GoldSET© remediation module to comply with the Federal Government's requirements The development of the tool to compare five technologies: - Pump and treat - In situ bioremediation - In situ chemical oxidation - Excavation and disposal - Multiphase extraction A simplified Life Cycle Analysis to quantify indicators: - Water Consumption - GHG Emissions - Energy Consumption - Solid Waste	The analytical process is simplified based on qualitative indicators only (except for costs) Eight technologies are added to the tool: Phytoremediation Excav. and soil washing Excav. and soil washing Excav. and ex situ thermal desorption Permeable reactive barrier Excav. and ex situ chemical oxidation Natural attenuation Excav. and landfarming Excav. and biopiles The creation of a weighing module	Introduction of the treatment train concept More flexibility for remedial scenarios development Four technologies are added to the tool: - Solidification/stabilization - In situ bioventing - In situ thermal desorption - Excavation and on site biopile treatment Introduction of risk-based management approaches: - Institutional controls - Light works - Hydraulic containment				
	uvernement Canada		Canada				

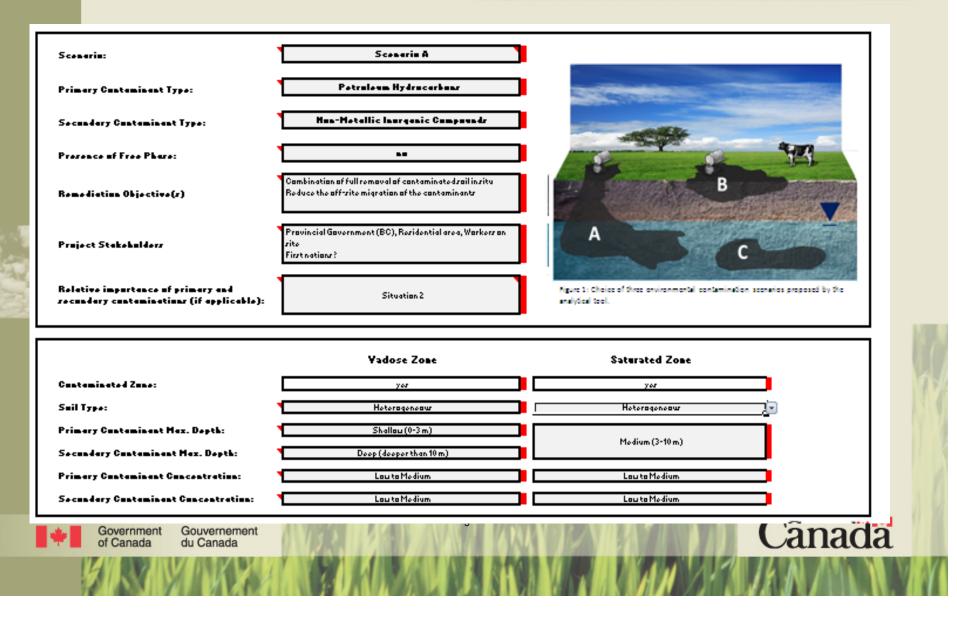
Type of Indicators

Quantitative Normalized When quantitative values are known, they are compared the other options in order to obtain a value between 0 and 100 (100 being the best option). Generic Generic indicators receive a score of 0, 33, 66, or 100, depending on the technology's efficiency, but independently of site-specific characteristics. The scores of the generic indicators are found in the <i>Reference (1)</i> tab.	1
Generic depending on the technology's efficiency, but independently of site-specific characteristics. The scores of the generic indicators	
	18
QualitativeSemi-genericBased on site-specific characteristics specified in the Site Description tab, semi-generic indicators receive a score of 0, 50, or 100, depending on the technology's efficiency. The scores of the semi-generic indicators are found in the Reference (2) tab	4
Custom The custom scoring scheme is indicator-specific and is used to incorporate some indicators in the assessment. A good understanding of the technology, the project and its context is required to choose the appropriate score.	10


Canada


Government Gouvernement du Canada

.


Environmental (15)	Social (9)	Economical (9)			
Soil Quality	Public and Worker's Safety	Technology Cost			
Soil Vapour Intrusion	Project Duration	Litigation Potential			
Groundwater Quality	Quality of Life (During the project)	Nuisance to Normal Operations			
Free Product	Public Benefits	Property Reuse			
Surface Water Quality	Cultural Heritage	Environmental Liability Local Economic Benefits			
Impact on Drinking Water Supply	Federal Government's Image				
Off-site Migration	Traffic	Technical Reliability (Maintenance & Repair)			
Quality of Physical Environment	Impact on Landscape	Logistics			
Impacts on Terrestrial Life (Fauna & Flora)	Innovation	Technological Uncertainty			
Impacts on Aquatic Life (Fauna & Flora)					
Greenhouse Gas Emissions					
Residual Waste Production					
Natural Resources					
Energy Consumption					
Water Consumption					

Step 1 – Site Conceptual Model

Step 2- Indicators

 Most important indicators (higher weight)

Environment

- Soil & GW Quality
- Impact on Drinking Water Supply
 - GHG Emissions
 - E consumption

Social

- Public and Worker's Safety
- Federal Government's Image

Economic

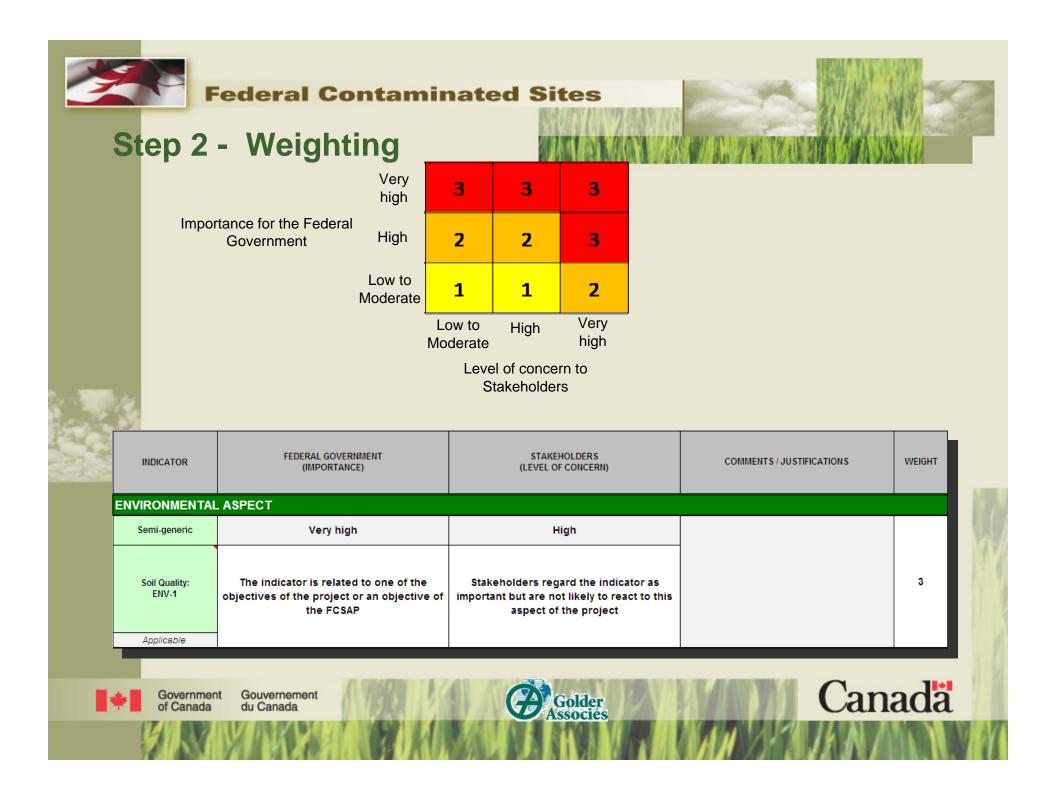
- Technology Cost
- Nuisance to Normal Operations
- Environmental Reserve

"Not applicable" indicators:

Environment

- Free Product
- Surface water quality
- Quality of Physical Environment
- Impacts on Terrestrial & Aquatic
 Life

Canada


Social

- Public Benefits
- Cultural heritage

Economic

- Litigation Potential
- Property Reuse

Step 3 - Treatment scenarios

Comparison of up to 5 different Remedial scenarios

For the current case – 3 scenarios:

- Excavation and on-site Treatment combined with Pump & Treat
- 2. Bioventing combined with a Permeable reactive barrier
- 3. Excavation & off-site treatment combined with institutional control/NA

Canada

Vadose Zone

Saturated Zone

Federal Contaminated Sites

Step 4 - Technology Selection

		Option 1				Option 2			Option 3				
	Remediation Options	Exc. & on-site Treatment / Pump & Treat		Technological Applicability Indicator		Bioventing /	Bioventing / Permeable Reactive Barrier		hnological plicability ndicator	Exc. & off-site disposal / Institutional Control		Technological Applicability Indicator	
cable	Primary Technology Primary Contaminant Type:Potroloum Hydrocarbonz	Excavation and Biopiles		•	100	In Situ Bioventing		•	50	Excavation and Disposal		•	100
Applicable	Secondary Technology Socendary Centeminent Type:Nen-MotellicInergenic Cempeunde	Encoración dia Bioplico		0	50	In Situ Bioventing		•	50	Excavation and Disposal		100	
cable	Primary Technology Primary Cantaminant Type:Petraloum Hydracarbany	Groundwater	Pump and Treat	•	50	Ground w ater	Permeable Reactive Barrier	•	100	Ground w ater	Risk Management (Institutional Control)	•	100
Applicable	Secondary Technology Socandary Cantaminant Typo:Nan-Metallic Inarganic Campaundr	Groundwater	Pump and Treat	•	50	Groundwater	Permeable Reactive Barrier	•	100	Groundwater	Risk Management (Institutional Control)	•	100

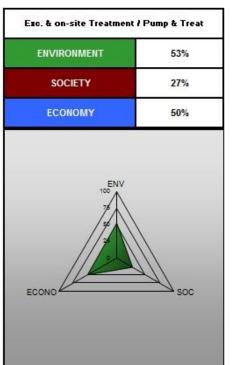
Free Phase Non Applicable Non Applicable Non Applicable Non Applicable Non Applicable Management Option Description

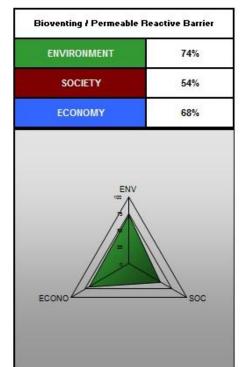
13

Government of Canada

.

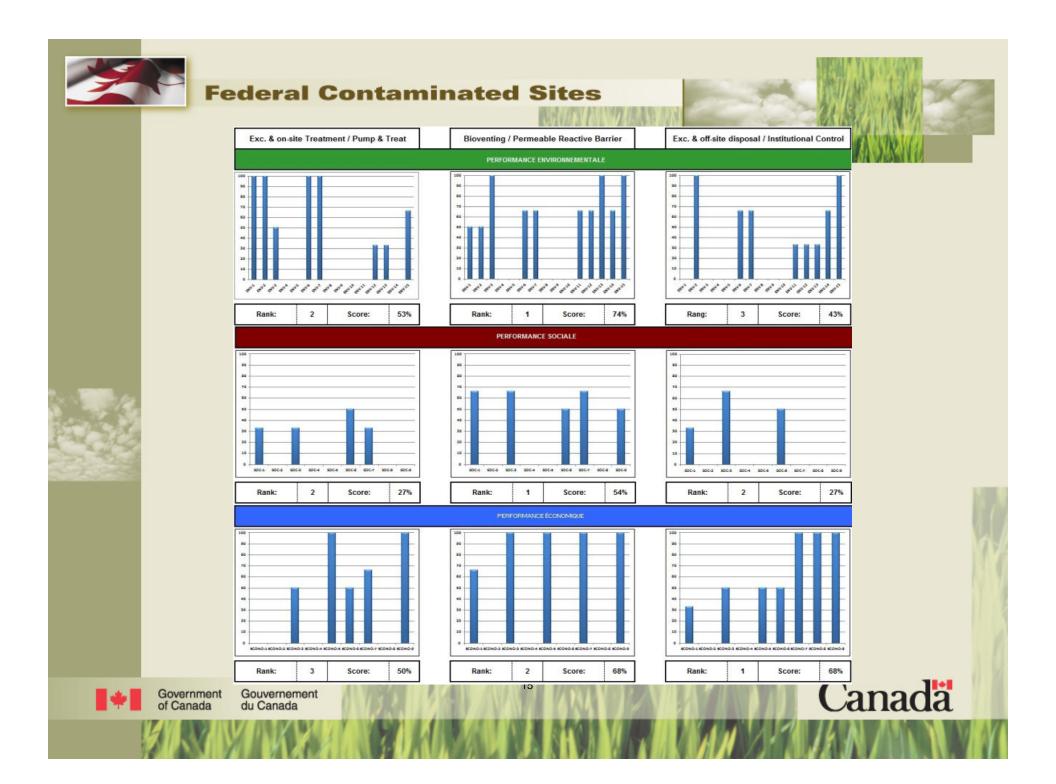
du Canada


Gouvernement


Non Applicable

Canada

Step 5 - Results Analysis


Exc. & off-site disposal / Institutional Control EIIVIRONMENT 43% SOCIETY 27% ECONOMY 68%

Canada

14

Government Gouvernement du Canada

The most sustainable option is represented by the biggest and most balanced triangle

- The SD Analysis Tool: Visual, User-Friendly & Flexible
 - Structures the decision process
 - Supports transparent decision-making
 - Simplifies the conceptualization process of abstract principles

Conclusions

Canada

- Helps in project risk management
- Serves as awareness tool for federal contaminated sites managers
- Provides tangible benefits:
 - Helps identify improvements
 - Serves as powerful communication tool for stakeholders
 - Helps display a positive image

Future Steps

Workshops

- To validate the selection and descriptions of the sustainability indicators
- To seek feedback on the generic and semi-generic scores for each technology
- To review and improve the final output of the tool, if needed

HTML Version

 Converting the tool to a HTML version, available externally of the federal government

<u>Training</u>

 To support the effective deployment of the SD Assessment Tool across Federal agencies with bilingual training sessions offered to contaminated site managers

Canada

Project Team

Public Works and Government Services Canada (PWGSC)

Mr. Sébastien Yelle Ms. Valérie Morin

Environment Canada

Ms. Chantale Côté Mr. Jean-René Michaud Mr. Jeremy Anglesey Golder Associés Ltée

Mr. Robert Noël de Tilly, eng. Project director

Mr. Sylvain Hains, eng. M.Sc. Technical Advisor

Mr. Benoit Bourque, eng. Project Manager

Mr. Vincent Guimont-Hébert, jr eng., GHG-IQ

Canada

Ms. Marianne Brien, Eng.

