

Biological in situ remediation

 Aleida de Vos van Steenwijk, RemTech 2011 (Banff, Canada)

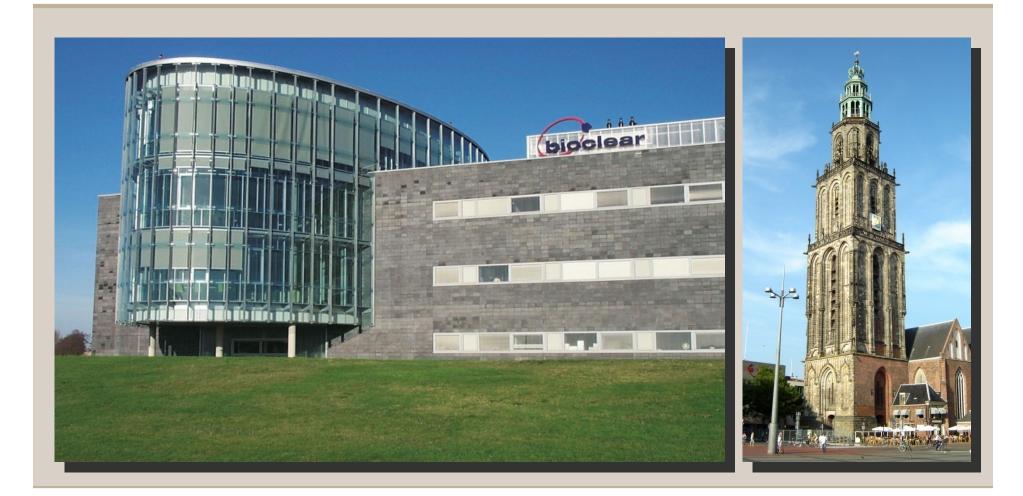
Presentation overview

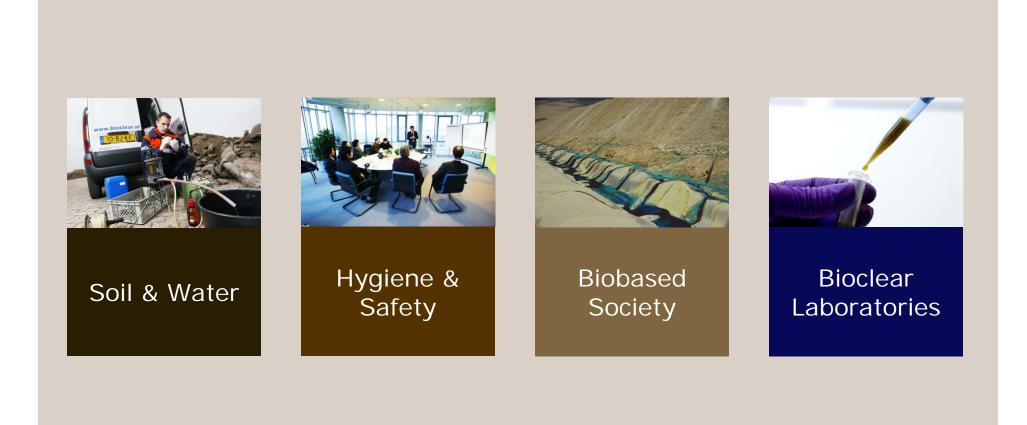
- The companies
- A short introduction
- Case study: remediation in an urban area
- Innovation and development

Oosterhof Holman Group 2011

Environmental Technology

- Soil and Groundwater Remediation
- Dredging
- Water Purfication Plants
 - Conventional systems
 - Membrane systems
- Renewabele Energy
 - Biogas
 - Wind
 - Biofuels
- Special Projects
 - "Sustainable Living"




- Consultancy and Innovation office for environment and sustainable production
- To make the world clean, sustainable and safe using biological processes
- 30 employees, multidisciplinary, teamwork
- A large knowledge network
- Offices in Groningen en Geertruidenberg (NL)

Soil & Water

Soil & Water

- In situ bioremendation
 - Natural attenuation
 - Feasibility and design of bioremediation concepts
 - Performance and supervision of biological soil remediation
 - Sustainable use of soil / cycling
 - Buffering capacity of soil (ETS)
- Ecosystem services
- Ecological quality and risk assessments
- Knowledge and technology development
- Monitoring and control of biological processes

Hygiene & Safety

Hygiene & Safety

- Prevent unwanted processes (detection, monitoring and control)
 - biofouling

۲

- biocorrosion / MIC
- Pathogens
- Monitoring and control biological processes
 - development custom made analyses
 - sampling strategies
 - interpretation
 - risk-assessments
 - preventative strategies

Biobased society

Biobased Society

- Monitoring and control biological processes
- Valorisation of wastes and residues
 - biogas
 - green chemicals
 - fertilisers
 - market research
- Recycling of nutrients (NPK)
- Chain development
- Knowledge and technology development

Bioclear laboratories

- Routine analyses for monitoring and control
- Analyses for ecological and soil quality
- Analyses for product quality / safety
- Development of custom-made analyses
- Validation and implementation
- Courses and workshops
- Contract research

Short introduction

In situ bioremediation

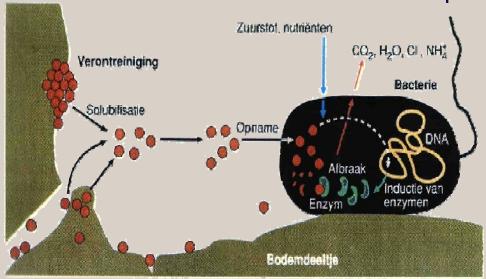
Biological degradation of CVOC is possible?

In the nineties: Biodegradation is difficult and slow

From 1997: *Dehalococcoides* bacterium (Maymo-Gatell *et. al.*) Research into optimum conditions for biodegradation

Now:

Biological in situ remediation is proven technology



Optimal conditions

PCE → TCE → DCE → VC → ethene → (ethane) (reductive dechlorination)

- Presence of *Dehalococcoides* bacteria
- Right conditions in soil
- Adequate nutrients and carbon source

Natural or a helping hand?

Natural Attenuation (NA)

- naturally occuring conditions are suitable
- no active measures required
- this situation is rare!

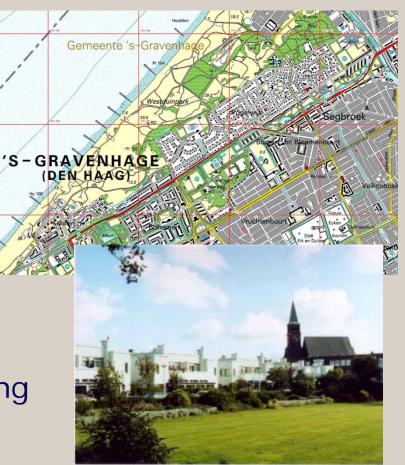
Stimulated degradation

- a limitation inhibits natural attenuation
 - create optimal conditions
 - add nutrients and/or carbon source
 - add bacteria → bioaugmentation

halwaterstroming

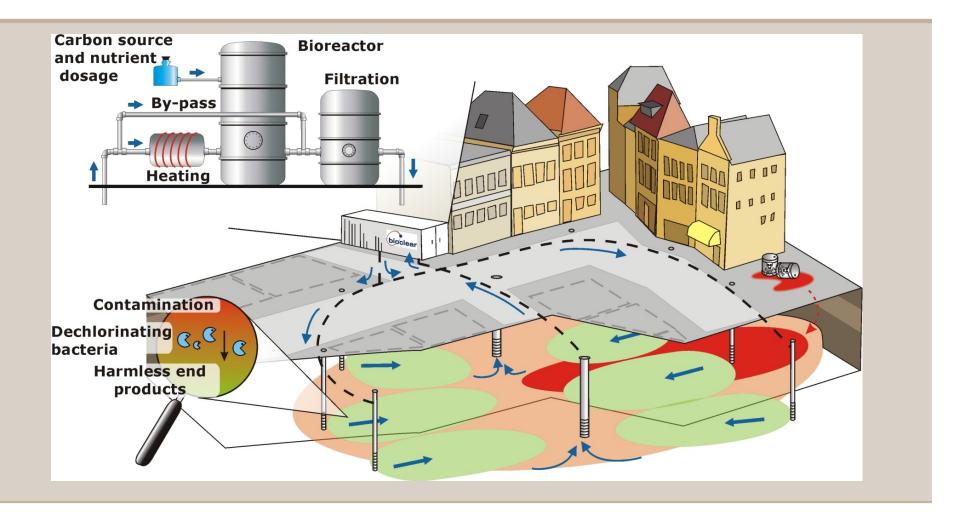
nschadelijk

adproduct


Case Study

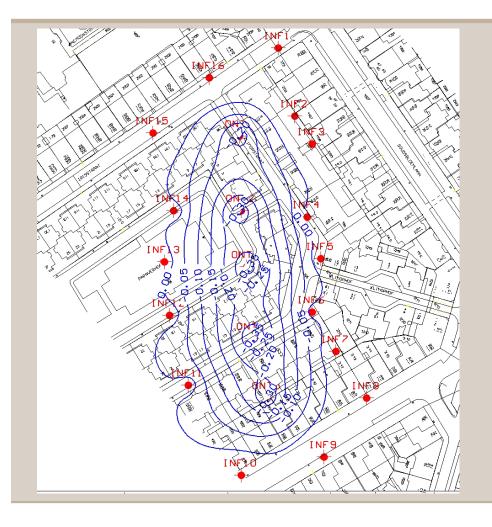
TCE concept in centre of The Hague, the Netherlands

Background information location


- Urban area (houses and shops)
- Renovated and protected buildings
- Contamination with chlorinated solvents (PCE and TCE)
- Likely cause: sewer leak containing waste from dry cleaners

TCE concept (bio-augmentation)

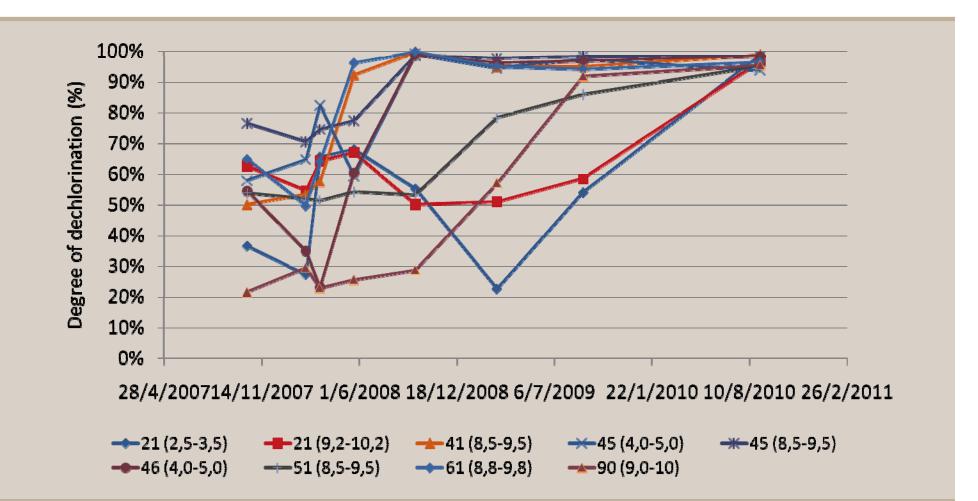
Remediation approach


Active phase

- Create right conditions in soil
- Sufficient carbon source for reductive dechlorination
- Sufficient and active dechlorinating population
- Passive phase
 - In situ reductive dechlorination until remediation aim is achieved
- Monitoring phase
 - Has a stabile end situation been achieved...?

- 80.000 m³ > I-value
- Up to 1.000 µg/l
- 10 m-sl
- Medium-grained sand
- 5 Extraction wells
- 16 Infiltration wells
- Closed water balance
- Water table change < 42 cm
- 10 m³/hour ext/inf

- <u>Active Phase</u>: Dec. 2007 Sept. 2008
- <u>Passive Phase</u>: 2 Years, goal: PCE=20 µg/l; TCE=262 µg/l; DCE=10 µg/l; VC=2,5 µg/l

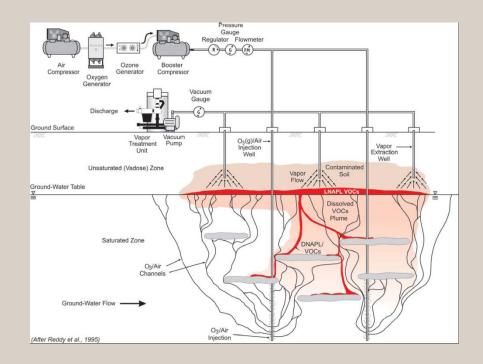


- After 1 year: 6 out of 9 wells < remediation target
- After 2 years: 8 out of 9 wells < remediation target
- Sept. 2010: Site closure
- In-situ treatment of TCE plume within 3 years
- 80.000 m³ soil volume remediated
- Total actual costs € 441.000 (= 5,51 euro / m³)

Sustainability

- TCE concept (as performed)
- Pump & Treat (hypothetical)
- ISCO using Ozone (hypothetical)

Alternative 1. Pump & Treat



- 17 Infiltration wells
- 13 Extraction wells
- 10 m³/hour
- Closed water balance
- Stripping system 8 KW
- Duration 10 years
- Costs est. € 900.000

- Ozone sparging
- Analogous to air-sparging
- NOD: 15 g O₃ / m³ soil
- Sparging efficiency: 5 %
- 24.000 kg ozone
- PLI + SVE system 12 KW
- Duration 1 year
- Costs est. € 800.000

Method for comparison: MCA

SOCIAL EFFECTS

(smell, noise, hindrance, potential dangers, chance of calamities, chance of damage)

ENVIRONMENTAL EFFECTS

(air, soil, groundwater, ecology, waste production, residual contaminations)

RESOURCES AND MATERIALS

(use and reuse of water, groundwater, energy, fuels (transport), chemicals, materials)

CLIMATE EFFECTS

(Carbon dioxide & methane emissions)

Compare remediation options on these 4 themes

Summary MCA results

		Alternative 1: Pump&Treat	Bio-augmentation (TCE concept)	Alternative 2: Ozone
	weight	score	score	score
Social effects	1	6,1	7,1	6,0
Environmental effects	1	8,7	9,0	9,0
Resources	1	8,0	9,5	8,0
Climate	1	6,0	9,0	6,0
Total		7,2	8,7	7,3

Innovative developments

Monitoring and control of microbial processes

Monitoring key microbial processes

"A good understanding of the capacity for natural attenuation is the key to feasible and practical bioremediation"

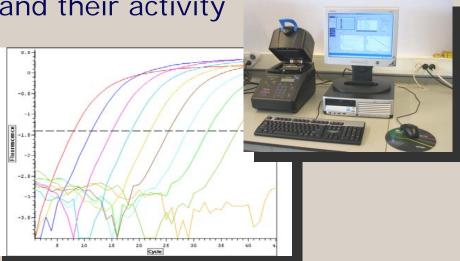
SamplingAnalysis

Groundwater sampling

"Standard method"

Large volume sampling (dialysis method)

BACTRAPs[©]

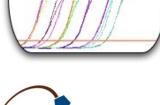


Who's there and what are they doing?

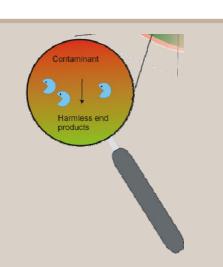
Quantification of micro-organisms and their activity

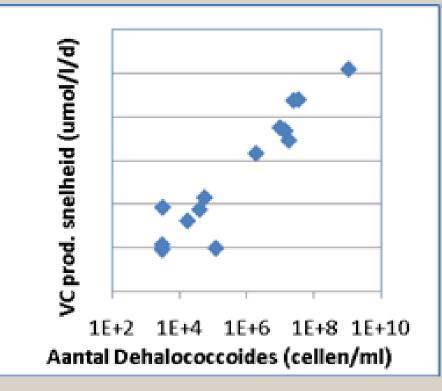
- **<u>Q-PCR:</u>** Flexibility
 - Accurate quantification
 - Activity measurements
 - Sampling
 - All sample types
 - Objective determination
 - Quality control

"Most species cannot be cultured as their growth conditions are unknown or cannot be reproduced in the laboratory. The percentage of cultivable micro-organisms depends on the complexity of the sample and can vary from 90% to as little as 1%. The risk of false negatives therefore is significantly increased."



Degradation processes of chlorinated ethenes


- Reductive dechlorination
 - Methanogenic conditions
 - Degradation of PCE, TCE, DCE & VC
 - Bacteria involved: *Dehalococcoides* spp
 - Key enzymes involved: VC-reductase
- Micro-aerophilic oxidation
 - For example Iron reducing conditions, low oxygen (as low as 0,03 mg/l)
 - Degradation of DCE & VC
 - Bacteria involved: *Polaromonas* (*cis-DCE* degradation)
 - Key enzymes involved: EtnC & EtnE (VC degradation)



QPCR

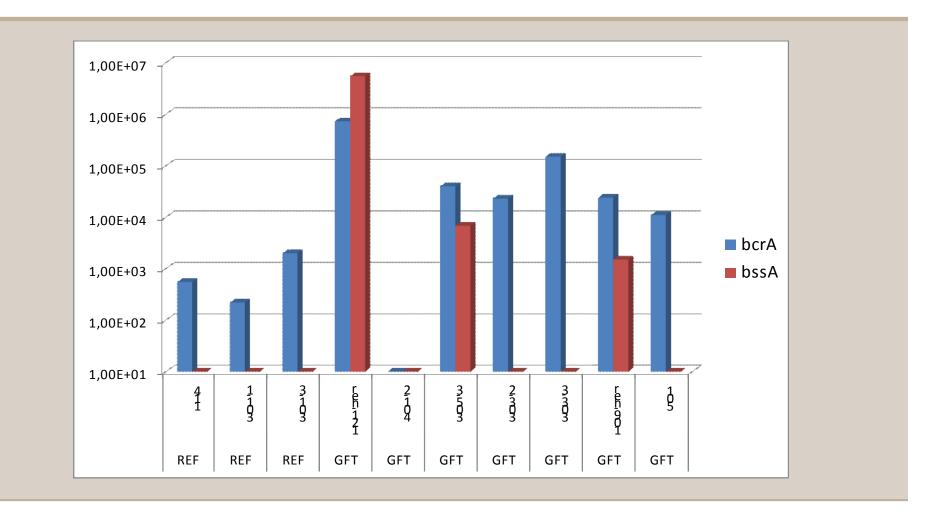
Reductive dechlorination

Correlation between number of *Dehalococcoides* cells and degradation in groundwater per m³ per day

Micro-aerophilic oxidation

Monitoring well		Pb61-A	Pb53	Pb67	Pb86	Pb86	Pb106	Pb 106
Depth		26 m-mv	38 m-mv	26 m-mv	14 m-mv	24 m-mv	20 m-mv	35 m-mv
Dehalococcoides	cells/ml	<	<	<	<	<	3,9x10 ⁴	2,1x10 ⁵
<i>Etn</i> C	cells/ml	<	7,4x10 ³	1,6x10 ¹	<	<	<	8,4x10 ²
<i>Etn</i> E	cells/ml	<	9 ,7x10 ²	<	<	<	<	1,0x10 ³
Polaromonas	cells/ml	<	<	<	<	<	<	<

Anaerobic degradation of aromatic compounds


Degradation of BTEXN

- BcrA enzyme: breaks open ring structure aromates
- BssA enzyme: first steps of degradation of aromates. Adds a molecule (fumarate) to methylated aromatic compounds (toluene en de xylenes). Likely also involved in degradation of benzene.
- NcrC enzyme: only recently discribed in literature. Same function as BcrA enzyme, but then for naphtalene

Anaerobic degradation of aromatic compounds

- In situ bioremediation is proven technology
- Bio-augmentation highly sustainable: low energy, low CO₂, low cost & very effective
- Continuing innovation and development to further improve in situ bioremediation

Thank you for your attention

Aleida de Vos van Steenwijk +31617394569 www.bioclear.nl devos@bioclear.nl

Anne van der Meulen +31646358840 www.oosterhof-holman.nl avdmeulen@oosterhof-holman.nl