

Investigating Background Groundwater Quality at Contaminated Sites – A Hydrogeochemical Approach

Remediation Technologies Symposium 2011, Banff, Alberta (October 2011)

Presented by: Stephen Munzar¹

Presentation Outline

- Introduction
- Determining Background Approaches
- Case Study
 - Introduction
 - Data Collected
 - Results
 - Conclusions

Introduction

Common definition of background GW Quality:

- Natural ambient groundwater quality not influenced by anthropogenic sources
- Commonly considered the groundwater quality "upgradient" of potential or known contaminant sources
- Why and when do we determine background?
 - Confirm natural presence of a substance
 - Prevent / limit unnecessary investigation / remediation of natural substances
 - To define a site specific local background concentration for a natural substance
 - To define the ambient or baseline groundwater conditions

Determining Background Conditions

Common Approach:

- Install upgradient monitoring wells outside of influence of site contamination
- Groundwater chemistry represents ambient nonanthropogenic conditions
- Statistically derive background concentration(s)

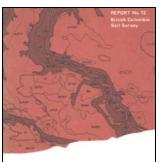
Potential Issues / Concerns:

- Upgradient wells completed in different geology and/or flow setting (not representative of background)
- Concentrations of inorganic constituents tend to be "spotty" (variability)
- Statistics may bias defined background concentrations

Regulatory

Regulatory Requirements in BC / Yukon:

- Install / sample min. 3 background wells
- Locate wells outside influence of anthropogenic sources within same geologic/hydrogeologic setting


COL FOR THE CONTAMINATED SITES REGULA UNDER THE ENVIRONMENT ACT

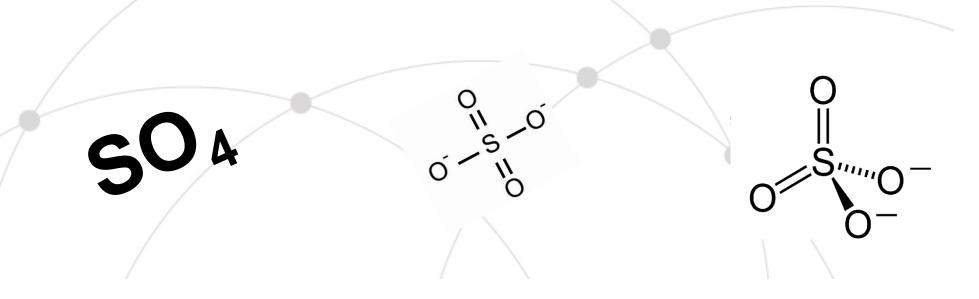
PROTOCOL 9 FOR CONTAMINATED SITES

- Sample wells min. two events
- Calculate 95th percentile concentration

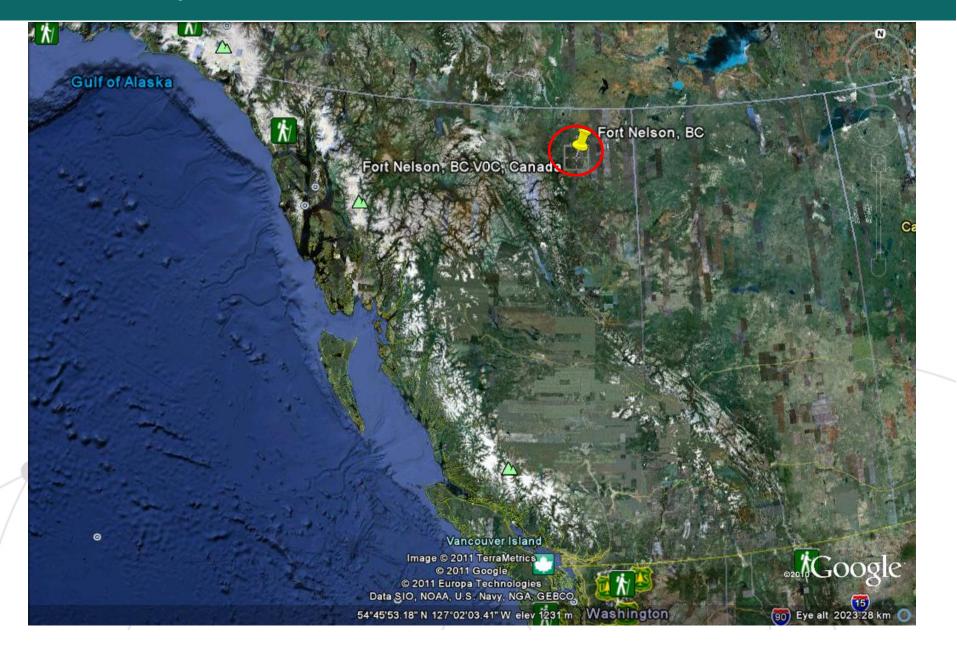
Scientific Based Approach

- 1. Thorough desktop research:
 - Regional surficial & bedrock geology
 - Soil mapping studies
 - Hydrogeology & geochemistry
- 2. Site history (source & potential contaminants)
- 3. Develop preliminary conceptual model
- 4. Define *local* geology & hydrogeology
- 5. Soil/sediment mineralogy (if beneficial)
- Collect additional groundwater geochemical data (major cations, anions, alkalinity)
- 7. Refine, confirm, or refute preliminary conceptual model

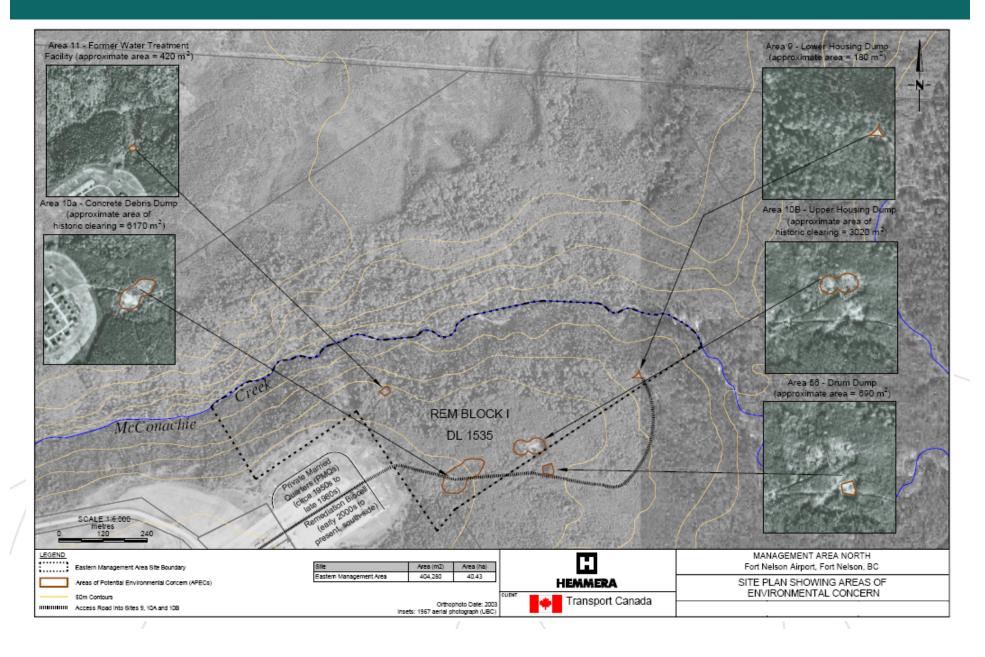
Soils of the Fort Nelson Area of British Columbia



Case Study Background


- Located adjacent to Fort Nelson Airport, NE British Columbia
- Used as refuse dumping area from 1952-1960s from the housing barracks located at the airport
- 3 Historical dumping sites and a sewage system:
 - Site 9 Former Lower Housing Dump
 - Site 10A Former Concrete Debris Dump
 - Site 10B Former Upper Housing Dump
 - Site 11 Sewage Disposal System
- Material observed in dumps concrete, garbage, sheet metal, electrical cable, glass, random metal debris, metal cans, dishes, tiles, lumber and coal (one site)
- Multiple site investigations completed to characterize soil and groundwater quality – Dissolved [sulphate] > CSR AW Standards

Study Objectives


- 1. Determine if sulphate is naturally occurring or anthropogenic
- 2. If naturally occurring, determine why it is elevated, and define a local background concentration

Study Location

Site Layout

Data Collected for Background

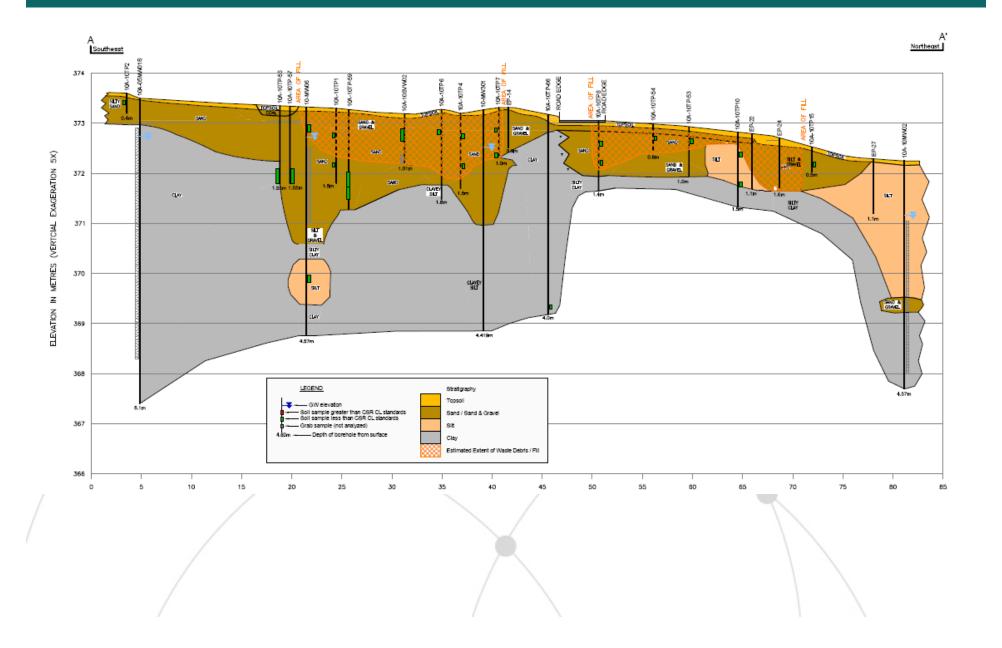
- Desktop information (geology, etc.)
- Local surficial geology (intrusive invest.)
- Collection and analysis of speciated sulphur in soil
- Mineralogical (petrographic) sample submission / analysis
- Site wide groundwater sampling for dissolved metals, anions

Results

Geology

Surficial Geology

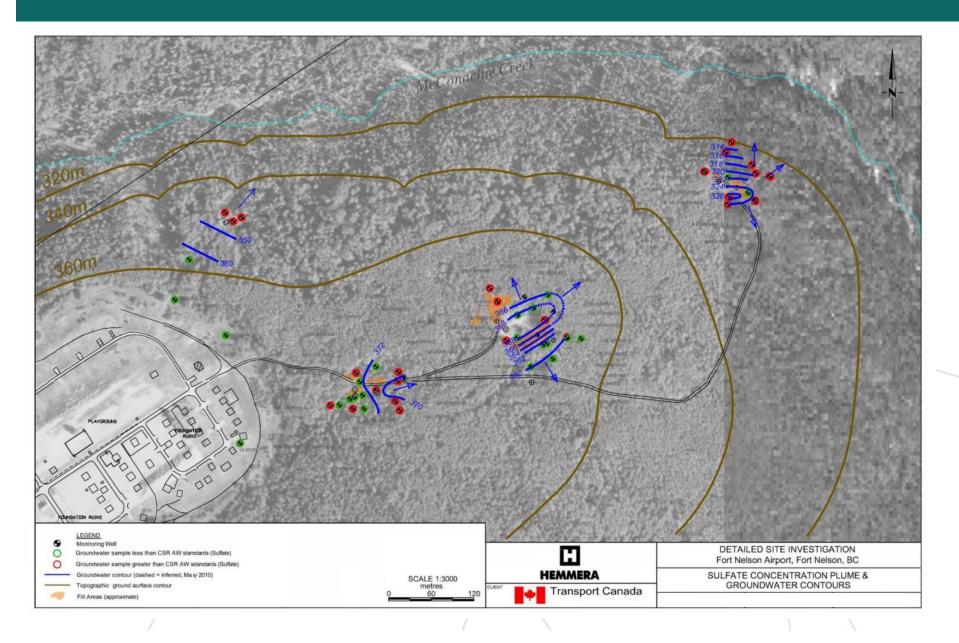
- Regional glaciolacustrine deposits (silts and clays) common to peace region
- Local Silt and clay capped with thin (0.5-1.0 m) sand and gravel

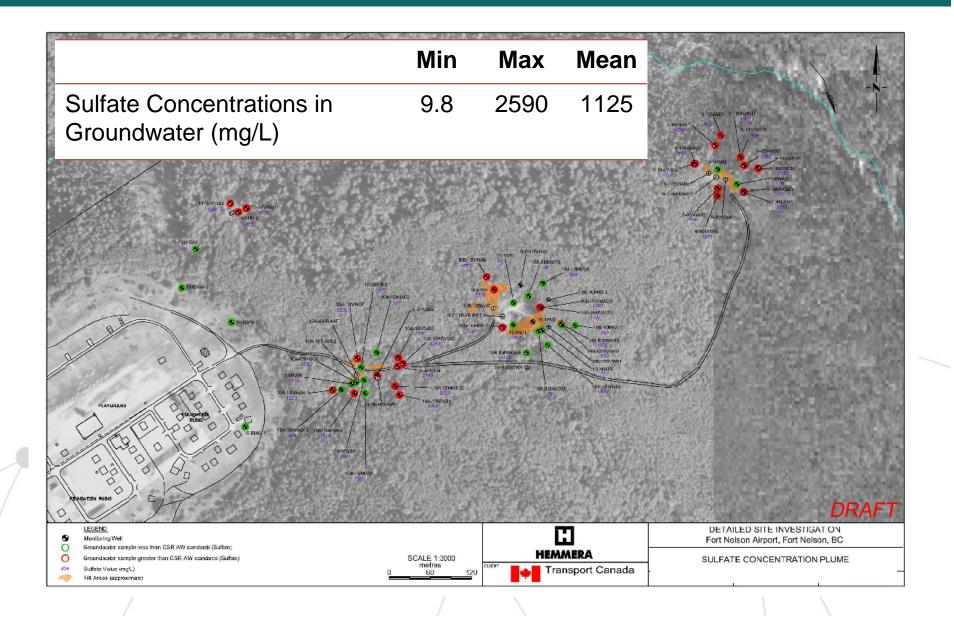

Bedrock Geology

- Regional Marine shales and siltstones of the Lower Cretaceous Buckinghorse Formation, Fort St. John Group.
- Local Not observed (anticipated >50 m deep)

Published Regional Soil Maps/Reports

- Soil chemistry reflects/mirrors the bedrock chemistry
- Marine shales commonly contain anhydrite (CaSO₄) and gypsum (CaSO₄·2H₂O) & other sulphate minerals
- Fort Nelson soils are relatively saline and contain accumulations of gypsum and carbonate minerals.


Geologic Cross-Section


Hydrogeology

- Local groundwater is mainly perched within the glaciolaccustrine silt/clay deposits
- Groundwater flow directions and gradients mirror topography
- Groundwater flows either towards the north, east or south depending on location along the ridge

Local Groundwater Flow Direction

Sulphate Distribution

Preliminary Assessment Results

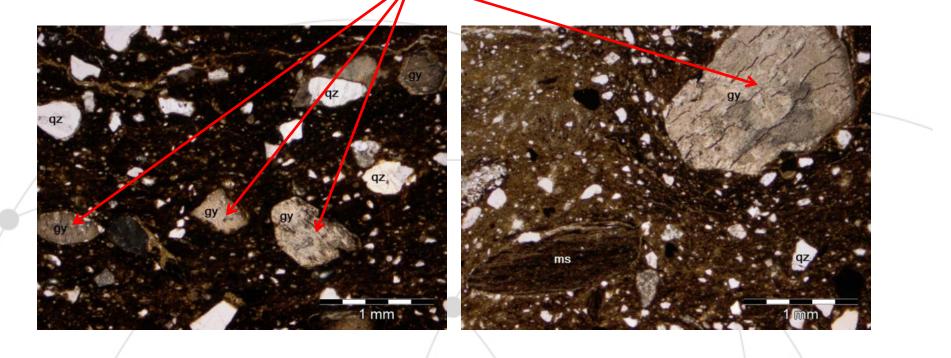
- Housing dumps may have contained drywall?
- Thin layer of coal at one dump site (sulphide minerals in the coal?)
- Bedrock geology consists of marine shales
- Surficial geology consists of silt and clay
- Regional soil studies chemistry mirrors marine bedrock chemistry (saline soils), gypsum (CaSO₄-2H₂O) accumulation near surface
- Soil results elevated barium (barite BaSO₄?)
- Groundwater chemistry elevated SO₄ (widespread) not co-incident with potential sources

Preliminary Conceptual Model

- SO₄ in groundwater associated with:
 - Barite (BaSO₄) that could be naturally occurring and sourced from marine shales
 - Gypsum (CaSO₄·2H₂O) sourced from drywall or naturally occurring gypsum in soil (regional soil survey)
 - Coal containing sulphide (FeS₂) minerals that have oxidized and released SO₄

Test Preliminary Conceptual Model

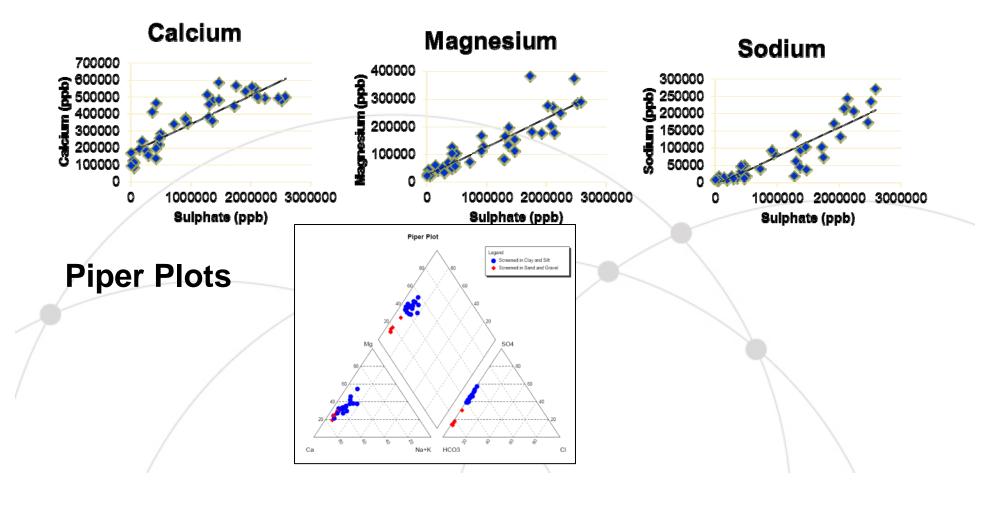
- To confirm or refute Barite, Gypsum or Sulphide source:
 - Need speciated sulphur analysis in soil
 - Soil mineralogy
 - Groundwater chemistry data (metals and anions)
 - Chemical cross-plots e.g. Ba vs. SO₄, Ca vs. SO₄, and Fe vs. SO4


Soil Analytical Results: Speciated S

Sample ID	Sample Location	Sample Depth (mbgs)	Soil Type	Sulfate Concentration (ppm)	Sulphide (ppm)
9-10TP-50	Fort Nelson Airport - Site 9	1.8 - 2.0	Silt and Clay	11800	700
9-10TP-51	Fort Nelson Airport - Site 9	4.7 - 4.9	Clay	3200	300
9-10TP-74	Fort Nelson Airport - Site 9	3.6 - 3.9	Clay	5900	300
9-10TP-75	Fort Nelson Airport - Site 9	7.3 - 7.6	Clay	12200	1900
10A-10TP-63	Fort Nelson Airport - Site 10A	3.45 - 3.65	Clay	4000	100
10A-10TP-64	Fort Nelson Airport - Site 10A	4.1 - 4.3	Clay	1900	1700
10A-10TP-65	Fort Nelson Airport - Site 10A	3.9 - 4.0	Clay	4300	200
10A-10TP-66.1	Fort Nelson Airport - Site 10A	3.8 - 3.9	Clay	3200	200
10A-10TP-66.2	Fort Nelson Airport - Site 10A	3.8 - 3.9	Clay	2900	200
10A-10TP-67	Fort Nelson Airport - Site 10A	4.7 - 4.8	Clay	100	4300
10B-10TP-53	Fort Nelson Airport - Site 10B	4.1 - 4.2	Clay	300	100
10B-10TP-79	Fort Nelson Airport - Site 10B	3.3 - 3.4	Clay	200	100
10B-10TP-80	Fort Nelson Airport - Site 10B	3.3 - 3.4	Clay	200	<0.01
11-10TP-1	Fort Nelson Airport - Site 11	3.05 - 3.15	Clay	800	300
10BMW-1.1	Fort Nelson Airport - Site 10B	1.2 - 1.4	Sand and Gravel	100	<0.01
102:\\1\\'-1.4	Fort Neison Airport - Site 108	4.3 - 4.7	Clay	200	4000

Mineralogy Results

Mineralogy Results


- Polished thin sections prepared for one sample where 12,200 ppm SO₄ was reported in soil
- Several grains of <u>gypsum</u> >1% (i.e. >10,000 ppm)

Chemical Cross-Plots & Piper Plots

Chemical Cross-Plots

- Conc. of 33 parameters (metals and anions) plotted vs SO_4 conc.
- Dissolved Ca, Mg, and Na correlated positively with SO₄ (<u>Not</u> Ba & Fe)

Dissolved SO₄ Chemical Signature

Typical mineralogy containing Ca, Mg, Na and SO₄ include:

Mineral Name		Mg:SO4) in the mineral	Mass Ratio Based on Groundwater Analytical Results (Range)
Gypsum / Anhydrite	CaSO ₄ *2H ₂ O	0.42 (Ca:SO ₄)	0.2 – 0.6 (Ca:SO ₄)
Epsomite	MgSO ₄ *7H ₂ O	0.25 (Mg:SO ₄)	0.1-0.4 (Mg:SO ₄)
Thenardite	Na ₂ SO ₄	0.48 (Na:SO ₄)	0.01 – 0.07 (Na:SO ₄)

- Dissolved mass ratios agree well with mineral mass ratios
 - These are minerals commonly occur in evaporitic sedimentary deposits such as marine shales

Refinement of Prelim. Conceptual Model

- Barite not a major source of dissolved SO₄
- Sulphide not a major source of diss. SO₄
- Gypsum is a more likely source
- Remaining questions:
 - 1. Could natural gypsum solubility account for concentrations measured?
 - 2. Is the source of gypsum from natural or anthropogenic?

1.Gypsum Solubility

- Max SO₄ concentration 2,590 mg/L
- Literature 3,150 mg/L to 5,000 mg/L in more saline soil environments
 - Translates to SO₄ concentrations of 1,750 to 2,790 m/L
 - [SO₄] in seawater ~2,700 mg/L
- Conclusion:
 - Gypsum alone could account for the concentrations reported in groundwater

2. Sources of SO₄

Potential Anthropogenic Sources:

- **Drywall:** Potentially disposed during dumping? *BUT:*
- Drywall <u>not</u> observed in fill materials
- Only 3 of 4 sites were dump sites
- Dissolved SO₄ concentrations at dump sites generally low
- **Coal:** Can contain pyrite (FeS₂) when oxidized can release sulphate and iron. **BUT:**
- Coal was only deposited at only one dump site
 No correlation between SO₄ and Fe in groundwater

Conclusion: Anthropogenic Derived Sulphate is Unlikely

2. Sources of SO₄ (Cont'd)

Natural Sources:

Natural Sulphate Minerals: e.g. Gypsum

- Bedrock comprised of marine shales
- Soil mapping indicate presence/accumulation of gypsum in soils
- High SO₄ concentrations deep in native soil (>12,000 ppm)
- Mineralogy confirms natural gypsum (>10,000 ppm)
- Strong positive correlation between Ca & SO₄ and Mg & SO₄
- Ca:SO4 and Mg:SO4 ratios in groundwater suggest sulphate mineral source
 - Gypsum is fairly soluble in water 3,150 mg/L pure

Study Conclusions

- Natural gypsum in soil was the source of SO₄ in groundwater
- Identifying 3 background well locations was challenging
- Ministry liked the approach due to the supplemental scientific based multiple lines of evidence provided

Lessons Learned:

3 background wells may often not be enough

Always useful to develop a conceptual model to explain the occurrence of the constituent in question – and collect key data to support/refute the conceptual model

THANK YOU!

QUESTIONS?

Presenter Contact Information:

¹Stephen Munzar, M.Sc., P.Geo.

Hydrogeologist, Hemmera, Victoria, BC, Canada smunzar@hemmera.com