MCEBR's approach to innovative treatment technology demonstration projects

Case study:

Treatment of soil contaminated by PHCs and PAHs leftover from the petroleum industry decommissioning in the east end of Montreal

Presented by : Josée Méthot, P. Eng., M.B.A.

Chief Executive Officer

at RemTech 2011 Banff, Alberta

MCEBR's approach

to innovative treatment technology demonstration projects

Case study:

Treatment of soil contaminated by PHCs and PAHs leftover from the petroleum industry decommissioning in the east end of Montreal

Presentation outline

- >The MCEBR mission
- ➤ The MCEBR approach, role and analytic process
- ➤ Case study Background
- ➤ Case study The Trust's objectives, Goal
- ➤ Case study Characterization
- ➤ Case study Call for expressions of interest
- ➤ Case study Lab tests, pilot tests
- ➤ Case study Assessment and recommendations
- ➤ Case study Rehabilitation works

The MCEBR mission

The Montreal Centre of Excellence in Brownfields Rehabilitation (MCEBR) is a non profit organization with a mission to stimulate innovation in the field of contaminated sites remediation and to assist land owners in finding the right solutions meeting their rehabilitation objectives.

A *neutral and independent* organization

The MCEBR: a unique approach

- Provides expertise in the remediation of contaminated soil, sediments and groundwater;
- ➤ Provides assistance in the decision-making process of land owners and real estate developers grappling with complex environmental problems;
- ➤ Provides networking and collaboration opportunities to developers of treatment technologies.

Finding site specific solutions

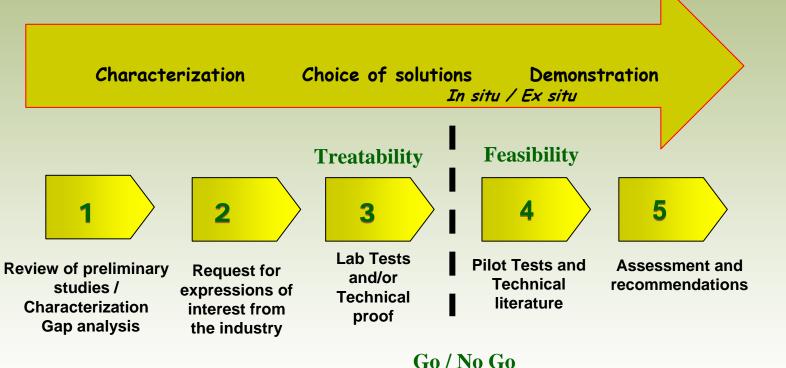
APPROACH TO CONTAMINATED SITES REHABILITATION (2 simple and rigorous steps)

Step 1

Characterization Choice of solutions In situ - Ex situ

Characterization Choice of solutions In situ - Ex situ

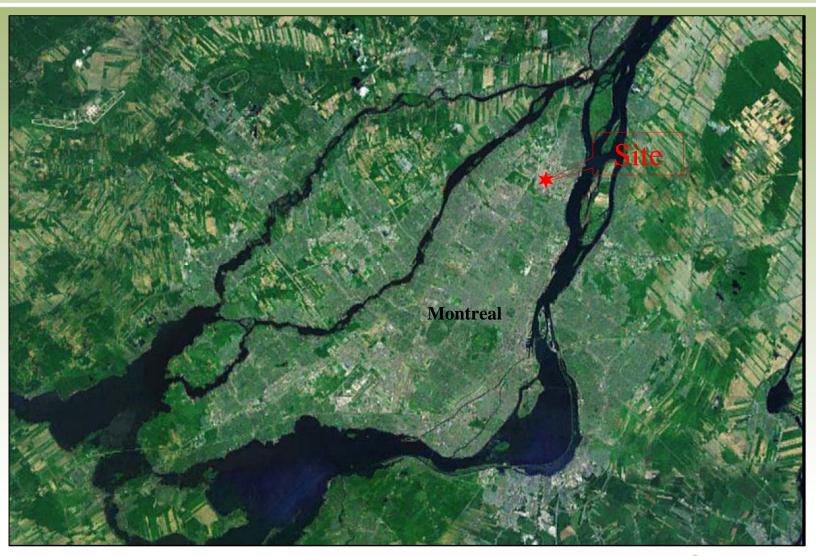
Rehabilitation Works In situ / Ex situ


MCEBR's involvement with real estate developers, consultants, technology developers and research centres

Private industry experts and companies

The role of MCEBR

MCEBR's assistance in the decision-making process and in the search for a solution tailored to specific site conditions.



A proven approach, tailored to customer needs

Case study - Background

Petrochemical facilities in Montreal-East

Case study - Background

Petrochemical facilities in Montreal-East

Case study - Background Petrochemical facilities in Montreal-East

Case study - Background Petrochemical facilities in Montreal-East

Case study - Background

Excavation and stockpiling of 20 000 m³ of contaminated soil

Case study: Montreal-East Petrochemical Installations Trust The Trust's objectives

- > To decontaminate 20 000 m³ of excavated soil;
- ➤ To evaluate and test commercially available technologies and technologies in development;
- > To choose the most appropriate technology;
- > To give a contract to the appropriate soil remediation company.

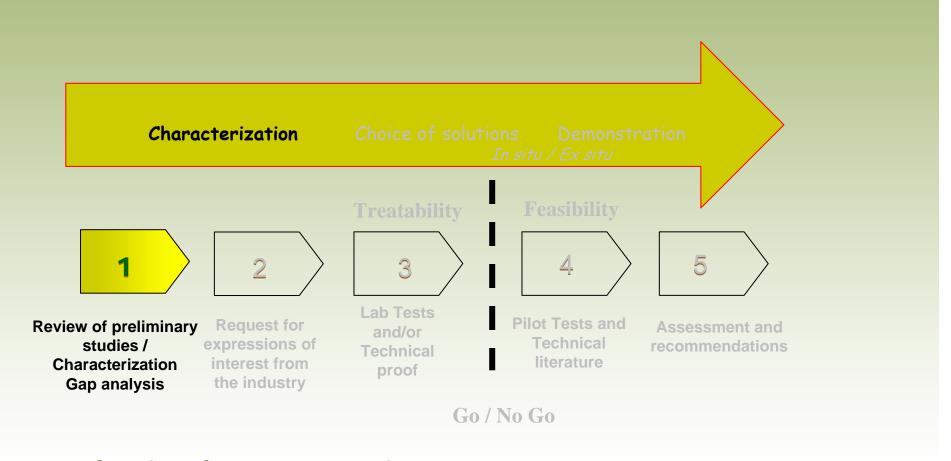
MCEBR was retained to accompany and assist the Trust.

Case study: Montreal-East Petrochemical Installations Trust

Objectives and constraints

Time – an important factor but the Trust was ready to take the time required to find the solution allowing to:

- > Reduce costs (\$);
- ➤ Treat the soil inside of the property limits;
- >Reuse and recycle the soil;
- ➤ Limit the hauling of the soils, before and after treatment;
- Limit or eliminate the purchase of clean soil from outside sources.



Case study: Montreal-East Petrochemical Installations Trust Goals

- > Demonstrate the effectiveness of the treatment methods
 - ➤ so that the PHC concentrations and PAH's will be lower than the C criterion and possibly below the B criterion of the Quebec Ministry of the Environment
- Assess the financial impact of the treatment methods.

Case study: Montreal-East Petrochemical Installations Trust The MCEBR approach

Creation of an expert committee

NRC Biotechnology Research Institute
Environment Canada

MCEBR

Case study: Montreal-East Petrochemical Installations Trust

Characterization of the contaminated soil

Case study: Montreal-East Petrochemical Installations Trust Analytical results

Parameters	Soil (Soil Criteria MDDEP (mg/kg)				Measured Concentrations (mg/kg)		
	Α	В	С	Landfill Criteria	Minimum	Maximum		
PHCs								
PHCs (C ₁₀ -C ₅₀)	300	700	3500	10000	1400	6800		
VOCs								
Benzene	<0.1	0.5	5	5	0.56	0.75		
Xylene	<0.2	5	50	50	5.3	12		
PAHs	PAHs							
1-Methylnaphthalene	0.1	1	10	56	1.9	42		
1,3-Dimethylnaphthalene	0.1	1	10	56	2.4	56		
2-Methylnaphthalene	0.1	1	10	56	1.1	28		
2,3,5-Trimethylnaphthalene	0.1	1	10	56	1.2	21		
Chrysene	0.1	1	10	56	1.1	1.5		
Naphthalene	0.1	5	56	56	5.1	7		
Phenanthrene	0.1	5	50	150	5.5	14		

Desired range

Case study: Montreal-East Petrochemical Installations Trust Analytical results

Parameters	Soil	Criteria	MDDEP (Measured Concentrations (mg/kg)			
	Α	B C Landfill Criteria		Minimum	Maximum		
METALS							
Cadmium (Cd)	1.5	5	20	100	<0.5	-	
Chromium (Cr)	85	250	800	4000	10	17	
Copper (Cu)	40	100	500	2500	45	81	
Lead (Pb)	50	500	1000	5000	13	61	
Nickel (Ni)	50	100	500	2500	16	22	
Zinc (Zn)	110	500	1500	7500	48	160	
Desired range					<	у В	

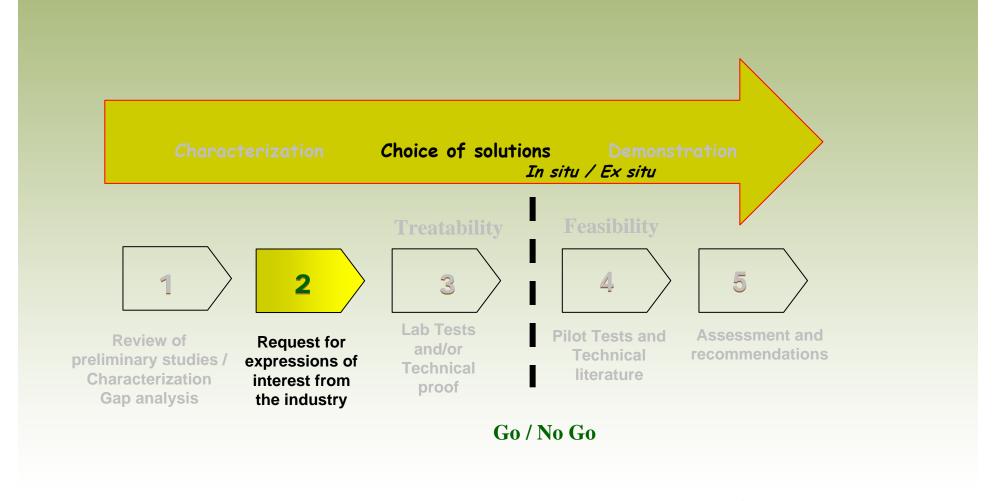
Case study: Montreal-East Petrochemical Installations Trust Physico-chemical parameters

Parameters	Results			
r urumetere	Minimum	Maximum		
рН	7.27	8.7		
Humidity (%)	6	16		
Phosphorus (mg/kg)	890	1200		
Nitrogen (mg/kg)	<460	980		

	>5mm	5 – 0.08mm	<0.08mm		
Particle size analysis	15%	52%	33%		
	Silty sand with little of gravel and traces to little of clay				

Case study: Montreal-East Petrochemical Installations Trust

Distribution (%) of contaminant levels in stockpiled soils


# Stockpile	Parameters	Number of samples per level of contamination					Total nbre of
" Otoonpho		<a< th=""><th>A-B</th><th>B-C</th><th>C-Landfill Criteria</th><th>> Landfill Criteria</th><th>samples</th></a<>	A-B	B-C	C-Landfill Criteria	> Landfill Criteria	samples
313	PHCs / VOCs / PAHs	-	-	6	29	-	35
	PAHs	-	-	-	-	1	1
	Metals	-	10	-	-	-	10
314	PHCs / VOCs / PAHs	-	-	4	20	-	24
	Metals	1	4	-	-	-	5
Distribution (%)		1%	19%	13 %	66%	1%	100%
		20°	%				

< B

> B

Case study: Montreal-East Petrochemical Installations Trust The MCEBR approach

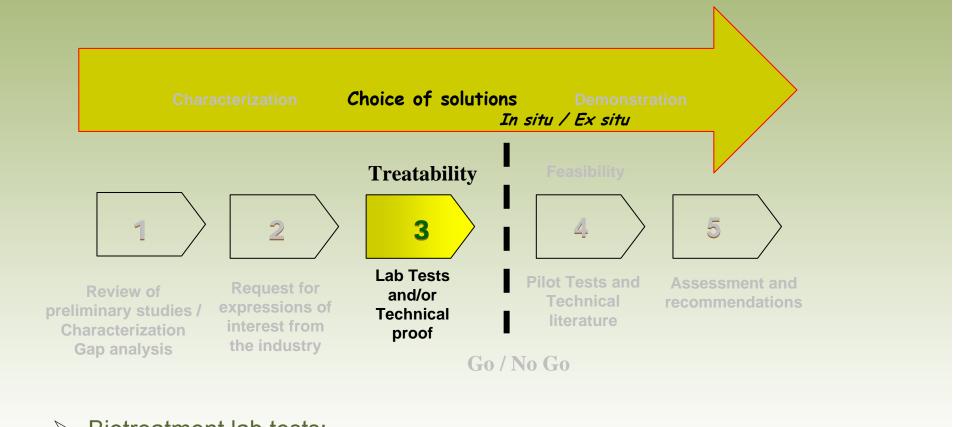
Case study: Montreal-East Petrochemical Installations Trust Call for Expressions of Interest

- ➤ CRITERIA To be eligible, the developers and/or owners of a technology must:
 - ➤ Be able to test the technology in Canada;
 - > File a proof of insurance with the expression of interest;
 - ➤ Demonstrate that they have the rights to use and/or exploit the method or the technology they offer.

The Trust and MCEBR signed confidentiality agreements with the developers or owners of the technologies.

Case study: Montreal-East Petrochemical Installations Trust Expressions of Interest

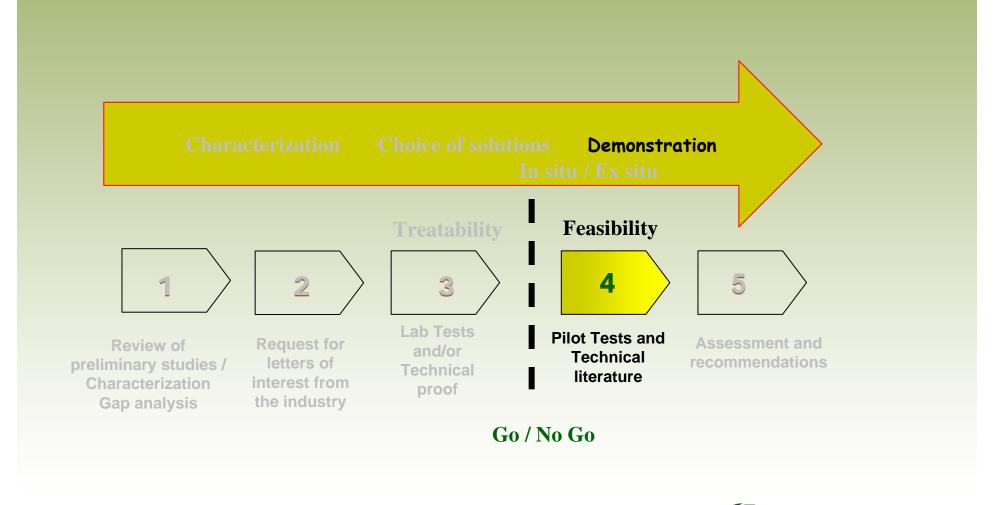
11 companies and the following technologies:


- 1- Biotreatment (3)
- 2- Thermal treatment (2)
- 3- Biotreatment and soil screening / soil washing with bacteria
- 4- Biotreatment and chemical oxidation (2)
- 5- Thermal treatment (+ chemical oxidation)
- 6- Thermal desorption
- 7- Chemical oxidation
- 8- Physical treatment with adsorbent
- 9- Biotreatment, thermal treatment and chemical oxidation

1 company decided not to continue – they thought they had no chance to end up with a contract.

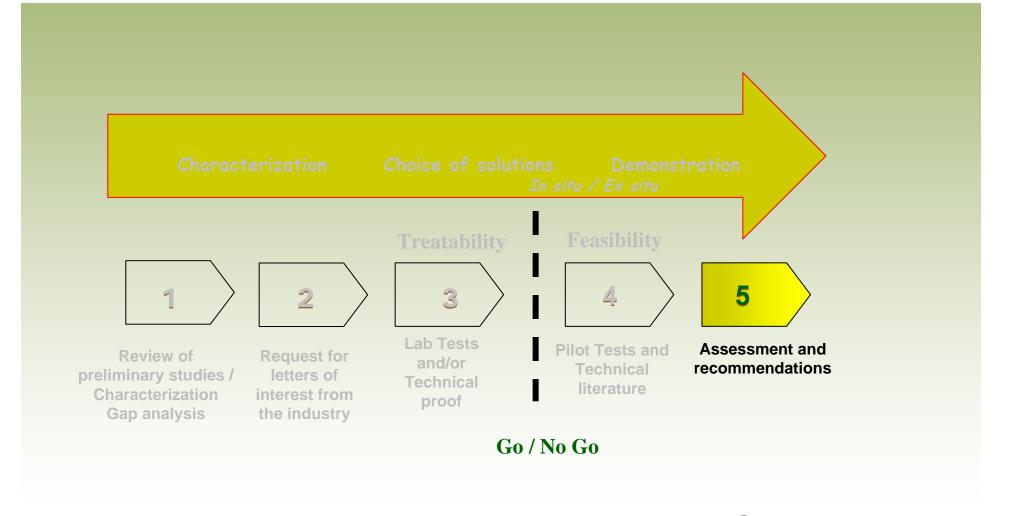
The expressions of interests were evaluated by the expert committee – 14 criteria

Case study: Montreal-East Petrochemical Installations Trust The MCEBR approach



- Biotreatment lab tests;
- Chemical oxidation lab tests;
- Others The technologies were already commercialized.

Case study: Montreal-East Petrochemical Installations Trust The MCEBR approach


Case study: Montreal-East Petrochemical Installations Trust Pilot tests

The following technologies were retained for the pilot tests:

- 1- Biotreatment (1 144 m³) (1 30 m³) (1 15 m³)
- 2- Thermal treatment (15 m³)
- 3- Biotreatment and soil screening / soil washing with bacteria (10 m³)
- 4- Biotreatment and chemical oxidation (2 10 m³)
- 5- Thermal treatment (+ chemical oxidation) (100 m³)
- 6- Thermal desorption (36 m³)
- 7- Chemical oxidation (10 m³)
- 8- Physical treatment with adsorbent (10 m³)

Case study: Montreal-East Petrochemical Installations Trust The MCEBR approach

Case study: Montreal-East Petrochemical Installations Trust Assessment and recommendations

> SELECTION CRITERIA

- ➤ Each proposed technology was evaluated with respect to its degree of efficiency to reduce the level of soil contamination under the "B-C" criteria, its processing time, processing costs and reliability, and commercial potential;
- ➤ All the information was analyzed and evaluated by the members of the expert committee.

Case study: Montreal-East Petrochemical Installations Trust

Assessment and recommendations: Selection criteria

3 types of criteria

1- Technological:

- Performance : efficiency;
- > Control: Experience, past projects references, technology status;
- Reliability and robustness of the technology: processes, steps, operations clearly defined with tangible results;
- > Reproducibility of the results for a full scale treatment;
- > Technical assistance Accessibility.

2- Environmental:

- > Health and safety: precautions and measures to protect humans and the environment;
- > Process/treatment waste: Nature, volume and mode of treatment;
- Physical and chemical characteristics of soils treated.

3- Operational:

- > Duration of the operations;
- Treatment activity planning: work distribution and organization;
- ➤ Site organization: equipment installation, storage products.

Case study: Montreal-East Petrochemical Installations Trust

Assessment and recommendations

Based on the results of the pilot tests and the evaluation of all the criteria,

the biotreatment technologies were retained and recommended to the Trust.

Case study: Montreal-East Petrochemical Installations Trust Rehabilitation works: Private industry

APPROACH TO CONTAMINATED SITES REHABILITATION (2 simple and rigorous steps)

Step 2

Characterization Choice of solutions Demonstration In situ - Ex situ

Rehabilitation Works In situ / Ex situ

MCEBR involvement with real estate developers, consultants, technology developers and research centres

Private industry experts and companies – Soil remediation industry

Case study: Montreal-East Petrochemical Installations Trust

Rehabilitation works – Soil remediation industry

- ➤ With biotreatment as the retained technology 5 biotreatment companies were invited to bid on the job
- > Sanexen Environmental Services Inc. was given the contract
 - → offered an effective and viable solution with a lower cost than the initial estimated budget.

MCEBR's approach to innovative treatment technology demonstration projects CONCLUSION

≻Cost (\$) reduction

- Cost initially estimated: 4 000 000 \$;
- Final cost: 800 000 \$.

The MCEBR approach reduced the Trust's costs by close to 80 %

- > Reuse of decontaminated soil on-site
 - Berm with trees and shrubs;
 - →Landscape improvement.

MCEBR's approach to innovative treatment technology demonstration projects CONCLUSION

On-site usage of the decontaminated soil

THANK YOU

Montreal Centre of Excellence in Brownfields Rehabilitation

Didier Barré, M.Sc. Business/Project Director

Tel.: 514 872-4323 ext.24

Mobile: 514 779-4323

didier.barre@cemrs.qc.ca

Josée Méthot, P.Eng., M.B.A. Chief Executive Officer

Tel.: 514 872-4323 ext.21

Mobile: 514 757-4323

josee.methot@cemrs.qc.ca

