"Triple Win"

Innovation Concepts B.V.

MSc Pol Knops
knops@innovationconcepts.eu

Two options

A: "Single"

Water/mineral treatment

B: Integrated "Triple":

- Separation
- Oil viscosity decrease
- Water/minerals treatment

B: Residue treatment

Vertical Tube Reactor

• Schematic:

- 0. Heat incoming residue
- 1. Oxygen addition
- 2. Oxidation
- 3. Effluent

Detail reactor

0 m

Length:

Heat exchanger
 Pre heating input material

Oxygen:

Energy productionDepth:

- Maximum pressure

Upflow:

 Heatexchange incoming material

1200 m

Plant Apeldoorn

Vertical Tube Reactor

- Experience:
 - Sewage sludge:120 m3/hr, 5% DS, 50% TVSYearly 550.000 m3/yr, 10 years
 - Chemical waste
 - Harbour sludge160 m3/hr (organics, settlement)
- Tested:
 - Various streams
 - Oil sand residue

3. Residue treatment

3. Residue treatment

Capacity

- Proven up to 140 m3/hr (for 7 5/8")
- Upscaling possible, up to 1.000 m3/hr (est. diameter DownComer 16")
 Total well bore: 40"

- Costs depending on:
 - Scale, COD load, final treatment, energy price etc.
- Estimated price t.b.d.

Comparable processes

Process	Wet Air Oxidation	CO2 Energy Reactor	Oil sand tailings
Application	Slurry waste treatment	CO2 sequestration	-Residue treatment
Depth	1200 meter	≈ 1200 meter	≈ 1200
Diameter	24 inch	24 inch	40 inch
Energy	10 MW(th)	11.8 MW(th)	100 MW(th)
Capacity	100 m3/hr	100 m3/hr	1000 m3/hr

Status processes

Process	Wet Air Oxidation	CO2 Energy Reactor	Oil sand residue
Experience	3 reactors > 10 years	Testing autoclave	Harbor sludge Autoclave tests
Patent	Due	Granted	Pending
Research	Private parties	University of Leuven (B)	Innovation Concepts
Test equipment	Available	Built	Available

"Triple Win"

Integrated process

- Proposed process
 - Mining
 - Water addition
 - Mixing into slurry
 - Heating slurry
 - Separation

- Oil
- Oil viscosity reduction

- Residue treatment
- Water reclamation
- Disposal cleaner residue

Integrated process

Vertical Tube Reactor

- Schematic:
 - 0. Heat incoming slurry
 - 1. Separation
 - 2. Oil:
 - Viscosity reduction
 - 3. Residue:
 - Oxidation

Viscosity temperature dependance

Temperature (degrees Celsius)

Remtech 2011 Innovation Concepts (NI)

Density

Temperature (degrees Celsius)

Remtech 2011 Innovation Concepts (NI)

1. Separation

- Using a hydro cyclone
 - Using difference in density
 - Higher temperature more pronounced
 - Higher temperature lower viscosity
- Experience comparable sizes
- Application (under higher temperatures and pressures) new

2. Oil Treatment

- Vis breaking
- Available literature
 - Literature & experience:
 breaking down long, cyclic chains

3. Residue treatment

- Currently "Tailings" sent to pond
- Addition extra oxygen
- Aim:
 - Energy production for maintaining the process
 - Oxidation of the residues (oil, metallic faction)
 - Settling residue fraction
- Tested in special autoclave

Vertical Tube Reactor

- Schematic:
 - Heat incoming slurry
 - Separation
 - Oil:
 - Viscosity reduction
 - Residue:
 - Oxidation
 - Settlement

Drawing

Movie

Vertical Oil Sand Reactor®

Application for oil-sand industry: Triple win:

- efficient extraction oil
- reduced viscosity
- cleaner residue

Energy balance

- Assumptions:
 - 400 m3/hr, 25% TS, 10% oil sand, recovery oil: 90%
- Temperatures
 - inlet: 20° Celsius, separation 200° Celsius
 - Energy required 66 MW(th)
- Energy production: 7.4 MW(th)
 - Heat exchanger recovery: 90%
- CO2 emission: ≈ 40 kg/barrel

Advantages

- 1. Separation at much higher temperatures:
 Higher yields
 No chemicals
- 2. Integrated "Vis breaking" effect
 - To some degree
- 3. Integrated residue treatment
 - Cleaner effluent
 - No external energy
 - Effluent settles in solid fraction
- Lower CO2 emissions

Questions?

Innovation Concepts B.V.

MSc Pol Knops
knops@innovationconcepts.eu