The Varied Landscape of Tools for Green and Sustainable Remediation

Justin Kelley

Overview of this Session

- Introduction
- Summary of the tools available
- Considerations when selecting tools
- Deep Dive on 3 publicly available tools
 - Sitewise
 - SRT
 - AECOM Holistic Tool
- Comparison of the tools
- Takeaways

Components of Sustainable Remediation

ENVIRONMENTAL

Technologies, approaches & designs that reduce the environmental footprint of site cleanup.

SOCIAL/COMMUNITY

Community engagement & adaptive reuse that provides a benefit to the community.

Off-the-Shelf Tools for Selecting Metrics & Completing Environmental Footprint Calculations

		A DESIGNATION OF THE OWNER OWNER OF THE OWNER OW	THE ROOM	41					-	autore l	-	1
_		Parallella		-			_					
Barrate .	Internet .	815	- 101	-+			411.	-	41			Г
	-	1001-001		1				+	0			t
	-							+				Г
at manufact	ingle	particular of	. 9									
	-	-	. 0									
	100	and independent	10	1.00		10	10	- 10	1.00	10	-	
	-		14	1.0		10	- 16	- 10		10		Г
NAME AND ADDRESS OF TAXABLE												
change table stands			1.0	1	1	. 6	4.	4.	6	1.1	1	Г
All and a second se												0
decrees.	Appendix 1		- 88.11			-	-		441-1		-	D
							1.1					

- Public Domain/Freeware
 - Sustainable Remediation Tool (SRT[™])
 - SiteWise™
 - Green Remediation Evaluation Matrix (Cal DTSC)
 - Illinois Greener Cleanup Matrix
 - AFCEE Performance Tracking Tool
 - EPA Region 9 Green Remediation Analysis

GaBi Software

ℤ⊑₫₫┦

Off-the-Shelf Tools for Selecting Metrics & Completing Environmental Footprint Calculations

- Proprietary Tools
 - AECOM GSRx BMP Tool
 - AECOM Holistic Tool
 - Arcadis BalancE3
 - BP Sustainability Assessment Tool
 - Golder GoldSET
 - Haley and Aldrich Sustainable Remediation Assessment Tool
 - Malcolm Pirnie Clean Me Green
 - PWGSC SD Tool
- Lifecycle Assessment (LCA) Tools
 - Gabi
 - Simapro
- ADDITIONAL TOOLS ARE IN DEVELOPMENT!

Usage Considerations in Selecting or Designing a Tool

- Scope of Footprint Analysis
 - Single site
 - Enterprise/portfolio wide
- Frequency of Footprint Analysis
 - One-time for a feasibility study
 - Quarterly/annually for Corporate or regulatory reporting
- Level of skill/training required to use the tool
- Resource constraints
 - Financial/budget
 - Timeframe

Which metrics, how to measure?

New Metrics Represent Externalities Not Generally Considered By Current Process

Example Metrics Used in Various Evaluation Tools

- Safety (risk of remedy)
 - Risk of death/injury in traffic accident
 - Risk from fugitive dust (due to particulate matter, contaminants)
- Natural resources impacts
 - Groundwater, surface water, natural resources
 - Effects of dredging or capping
 - Relationship to Natural Resources Injury, Damages
- Energy use
 - Conservation, alternative sources, energy independence
 - Moving contaminants from one place to another
- Economics
 - Cost, effect on home prices, redevelopment, etc.
- Greenhouse Gas Emissions
 - CO_2 , NO_{X} , CH_4

Common Environmental Metrics: Positives and Negatives

Core Element	Evaluate Negatives	Evaluate Positives
1. Energy	Total energy use: natural gas (BTU), electricity (kWh), fuel (gallons)	Renewable energy applied (KWh saved by solar, wind, geothermal, biomass energy)
2. Air	Total air pollutants, GHG emissions (CO ₂ e), dust	GHG emission reductions $(CH_4 \text{ to } CO_2)$
3. Water	Total water use (gallons or liters)	Water recovery (gallons or liters)
4. Land	Total land disturbed (acres); noise and lighting disturbances	Land reuse (acres/; ecosystems enhanced
5. Materials & Waste	Waste generated (tons)	Materials reused (tons)

SiteWise[™] Tool

- What is SiteWise[™]
 - Series of Excel spreadsheets to calculate impacts of remediation in terms of sustainability metrics
 - Originally developed by Battelle but further development was performed jointly with the Navy and USACE in a collaborative effort
 - Tool available to the public as a freeware

Tool Framework

- Remedial technologies are broken down into activities or modules
- User builds-up overall remedy using different modules as appropriate
- Building block approach optimizes tool flexibility
 - Tool can be used for a variety of remedial technologies, portions of technologies, or individual actions

SRT[™] Tool

What is SRT[™]

- Series of Excel spreadsheets to calculate impacts of remediation in terms of sustainability metrics
- Developed by AECOM/GSI for AFCEE for use on its sites
- Released to the public as a freeware
- Tool Framework
 - Series of 8 technologies selected based on AFCEE's frequency of application
 - Tiered approach
 - Tier 1 Designed to be completed in 1-2 hours using "rules of thumb"
 - Tier 2 Designed to be completed in 1-2 days with user defined inputs
 - Version 3 just released
 - Links AECOM's RACERTM software to allow for direct input to SRT

AECOM Holistic Tool[™]

- What is the AECOM Holistic Tool[™]
 - Series of Excel spreadsheets to calculate impacts of remediation in terms of sustainability metrics
 - Originally developed by AECOM Italy for use on an initial project site
 - Tool has been expanded to include additional technologies for use on additional project sites
 - Proprietary Tool
- Tool Framework
 - Remedial technologies are broken down into activities or modules
 - User builds-up overall remedy using different modules as appropriate
 - Building block approach optimizes tool flexibility
 - Tool can be used for a variety of remedial technologies, portions of technologies, or individual actions

Battelle SiteWise[™] Tool Framework

Battelle SiteWise[™] Interface

USER INPUT		Pump 1	Pump 2	Pump 3	Pump 4
Method 1 - IF NAME PLATE S	PECIFICATIONS ARE KNOWN				•
USER INPUT	Input Pump horsepower (hp)	0	0	1	5
USER INPUT	Input Number of pumps operating	1	0	2	6
USER INPUT	Input Operating Time for each pump (hrs)	10	0	3	7
	Input Pump Load	0.8	0.8	0.8	0.8
	Input Pump Motor Efficiency	0.9	0.9	0.9	0.9
Method 2 - IF PUMP HEAD IS	KNOWN				
USER INPUT	Input flow rate (gpm)	0	0	0	0
USER INPUT	Input total head (ft)	0	25	0	0
USER INPUT	Input Number of pumps operating	0	1	0	0
USER INPUT	Input Operating Time for each pump (hrs)	0	4	0	0
	Input pump Efficiency	0.6	0.6	0.6	0.6
	Input specific gravity	1	1	1	1
	Pump horsepower (hp)	0.00	0.00	0.00	0.00
Method 3 - IF ELECTRICAL U	SAGE IS KNOWN				
USER INPUT	Input Pump Electrical Usage (KWh)	1000	0	0	0
Select Region					
USER INPUT	Choose Region from Figure 1	AKGD	AKMS	AZNM	CAMX
	CO ₂ emission factor (lb/MWH)	1232	499	1311	724
	CH ₄ emission factor (lb/MWH)	0.0256	0.02075	0.01745	0.03024
	N ₂ O emission factor (lb/MWH)	0.00651	0.00408	0.01794	0.00808
	NOx emission factor (Ib/MWH)	2.480	6.791	2.111	0.618
	SOx emission factor (Ib/MWH)	1.214	0.526	1.081	0.531
	ENERGY OUTPUT		•		•
	Energy Usage (KWh)	1.0E+03	0.0E+00	4.0E+00	1.4E+02
	Energy Usage (MWH)	1.0E+00	0.0E+00	4.0E-03	1.4E-01
	Energy Usage (BTU)	8.5E+06	0.0E+00	3.4E+04	1.2E+06
	CO₂ OUTPUT				
	CO ₂ emission (metric ton)	5.6E-01	0.0E+00	2.4E-03	4.6E-02
	N_2O emission (metric ton $CO_2 e$)	9.2E-04	0.0E+00	1.0E-05	1.6E-04
	CH_4 emission (metric ton CO_2 e)	2.4E-04	0.0E+00	6.6E-07	4.0E-05
	NOx and SOx OUTPUT				
	NOx emission (metric ton)	1.1E-03	0.0E+00	3.8E-06	3.9E-05
	SOx emission (metric ton)	5.5E-04	0.0E+00	2.0E-06	3.4E-05
TOTAL FROM PUMP OPERATIO	DN				
CO ₂ Emission (metric ton)	6.1E-01				
Enorgy Used (MW/b)	1 1E+00				

CO ₂ Emission (metric ton)	6.1E-01
Energy Used (MWh)	1.1E+00
Energy Used (MMBTU)	9.8E+00
Water Usage (gal)	5.8E+02
NOx Emission (metric ton)	1.2E-03
SOx Emission (metric ton)	5.9E-04

<u>AECOM</u>

SRT[™] Tool Framework

Framework: Tiers of Varying Detail

	Tier 1	Tier 2		
Calculation Basis:	"Rules of Thumb"	User-entered detailed design		
Time Required: 1 - 2 hrs		1 - 2 days		
	Tier 1 Advantages	Tier 2 Advantages		
	 ✓ Shorter execution than Tier 2 ✓ Extensive built-in defaults ✓ Simpler user inputs ✓ Most appropriate before an Feasibility Study (FS) 	 ✓ More site-specific results ✓ More default user-overrides ✓ Most appropriate after an FS ✓ More appropriate for optimizing existing systems 		

SRT[™] Tool Interface

PUMP AND TREAT - TIER 2

Case Study

Northeastern US

O&M

Design for Managing Groundwater

AECOM Holistic Tool[™] Interface

Stressors	Units	EXCAVATION	TRANSPORTATION	THERMAL TREATMENT	LANDFARMING TREATMENT	TRANSPORTATION	BACKFILLING	SHEETPILING	<u>Total</u>	
Gas emissions										
CO2	kg	1.4E+06	6.6E+05	4.7E+07	1.1E+05	6.6E+05	7.0E+05	3.0E+04	50,900	
СО	kg	6.0E+04	2.5E+03	1.1E+04	3.2E+02	2.5E+03	6.0E+04	1.9E+04	136	
NO _x	kg	4.9E+04	9.4E+03	4.2E+04	1.3E+03	9.4E+03	4.9E+04	1.6E+04	159	Ľ
SO _x	kg	6.8E+02	1.0E+02	1.6E+04	1.9E+01	1.0E+02	7.0E+02	2.0E+02	18	
Work accidents										
expected number of accidents	-	3.4E+00	1.8E-02	2.7E+00	2.7E+00	1.8E-02	3.4E+00	4.4E-01	12.2	
expected number of deadly accidents	-	1.0E-02	9.1E-04	8.2E-03	4.1E-04	9.1E-04	1.0E-02	1.3E-03	0.031	-
Dust emissions										
E _{PM10}	kg	5.6E+06	1.0E+05	5.1E+01	4.3E-01	1.0E+05	5.6E+06	4.6E+05	11,300	4
E _{PM2.5}	kg	7.8E+05	1.0E+04	7.1E+00	6.0E-02	1.0E+04	7.8E+05	6.4E+04	1,600	τ
Energy consumption										
mechanical/combustion/electrical energy	MJ	2.0E+07	3.7E+06	7.8E+08	1.6E+06	3.7E+06	1.0E+07	1.9E+05	8.20E+08	MJ
Water consumption										
groundwater and superficial water	m³	2.6E+05	•	-	1.3E+05	-	-	1.5E+04	394,000	m³
Carbon footprint										
oak wood									450	ha
agricultural land									623	IId

Background and Functionality

Comparison Factor/Attribute	SRT	SiteWise	Holistic Tool	
Sponsoring / Funding Organizations	-unding AFCEE USACE; USN		AECOM	
Developing Organizations	AECOM (Prime) Subs: GSI Environmental CH2M Hill	Battelle	AECOM	
Platform / Environment	MS Excel	MS Excel	MS Excel	
Number of Workbooks	1	37	16	
Work Flow Within the Tool	Menu-driven UI	Self-navigate	Self-navigate	

Page 18

Background and Functionality (continued)

Comparison Factor/Attribute	SRT	SiteWise	Holistic Tool
Analyzes Multiple Alternatives Simultaneously	Yes (up to 4)	Yes (up to 6)	Yes (up to 13)
Remedial Technology Scope/Applicability	Focused on 8 remedial technologies (Primary AFCEE uses)	Not limited to any given remedial technology	Focused on 12 remedial technologies
User Guide	Yes	Yes	Yes
Help System	Yes	No	No
Current Version	2.1	1.0	1.1
Availability	Freeware	Freeware	Proprietary

Page 19

Typical Uses and Applications

Applications of the Tool	SRT	SiteWise	Holistic Tool
Feasibility Studies	Х	Х	Х
Remedial Process Optimization	Х	Х	Х
Five Year Reviews	Х	Х	
Baseline Reporting/Disclosure	Х	Х	

AECOM

Lifecycle Stages When the Tools Can Be Used

Lifecycle Stage	SRT	SiteWise	Holistic Tool
Preliminary/Initial Assessment	Х		
Site Inspections	Х	Х	
Remedial Investigations	Х	Х	
Feasibility Studies	Х	Х	Х
Remedy Selection & Decision	Х	Х	Х
Remedial Design	Х	Х	
Remedial Construction	Х	Х	
Operations & Maintenance	Х	Х	
Long-term Management/Monitoring	Х	Х	
Site Closeout			

Environmental Metrics Evaluated by the Tools

Metric	SRT	SiteWise	Sima Pro	Holistic Tool
Carbon Dioxide (CO2) Emissions	Х	х	х	Х
Nitrogen Oxides (NOx) Emissions	Х	Х	Х	Х
Sulfur Oxides (SOx) Emissions	Х	Х	Х	Х
Particulate Matter (PM) Emissions	Х	Х	Х	Х
Energy Consumption	Х	Х	Х	Х
Water Consumption		Х	Х	
Landfill				Х
Change in Groundwater Resource Service	Х			
Change in Ecologic Resource Service of Land	Х		х	
Carbon "footprint"	X		х	Х

Social & Economic Metrics Evaluated by the Tools

Metric	SRT	SiteWise	Sima Pro	Holistic Tool
Social Factors				
Worker Safety/Construction Accident Risk	Х	Х	Х	х
Economic Factors				
Technology Construction / Implementation Cost	Х			
Technology Operation & Maintenance Cost	х			
Change in Economic Resource Value of Land	х			
Change in Economic Resource Value of Groundwater	х			
Variable Cost scenarios for Carbon offsets	х			
Variation of Energy cost over remedial lifecycle	х			

Remedial Technologies Addressed Within the Tools

Remedial Technology	SRT	SiteWise	Holistic Tool
Excavation	Х	N/A	Х
Road transport	Х	N/A	Х
Barge transport		N/A	Х
Sediment dredging		N/A	Х
Sediment capping		N/A	Х
Landfarming		N/A	Х
Sheetpiling		N/A	Х
Thermal desorption		N/A	Х
Slurry wall		N/A	Х

Remedial Technologies Addressed Within the Tools (continued)

Remedial Technology	SRT	SiteWise	Holistic Tool
In situ thermal technologies	Х	N/A	Х
In-situ stabilization / solidification (ISS)		N/A	Х
Jet grouting		N/A	Х
In-situ Chemical Oxidation (ISCO)	Х	N/A	Х
Enhanced Bio	Х	N/A	Х
LTM/MNA	Х	N/A	Х
Soil Vapor Extraction (SVE)	Х	N/A	Х
Permeable Reactive Barriers (PRBs)	Х	N/A	

Output Format & Content

Comparison Factor/Attribute	SRT	SiteWise	Holistic Tool
Metrics in Natural Units	X	Х	Х
Metrics in "Normalized" Units	Х		Х
Comparitive Graphs and Charts	Х	Х	Х
US Units	Х		Х

Takeaways

- Chicken and the Egg
 - Metrics & remedial technologies sometimes dictate which tool to use
 - Tools sometimes dictate which metrics will be considered
- Different tools require a different level of effort to use

- Most tools have not been designed with portfolio management in mind
- The tool is not as important as the inputs and understanding going into the development of the site
- Tools can help identify the key aspects of a project that can improve your sustainability metrics and drive innovative ideas
- Tool selection is site specific. Should be based on the project needs/phase/remedial technology – Some tools are limited by the technology selected
- Customized tools can be a better approach based on the organization's needs.

Name Justin Kelley Title Sr. Project Manager Phone 1 519 915 3086 Email justin.kelley@aecom.com