

Progress Toward Updated Subsoil SAR Remediation Guidelines Below the Root-Zone

> Presented at: RemTech 2011 Banff, Alberta

Presentation by: Greg Huber, M.Sc., P.Eng, PMP Anthony Knafla, M.Sc., DABT Lori Vickerman, M.Sc.

October 20, 2011

ACKNOWLEDGEMENTS

- Petroleum Technology Alliance of Canada (PTAC)
- Program of Energy Research and Development (PERD)
- Alberta Environment
- Husky
- Suncor / Petro-Canada
- Orphan Well Association
- Exova (in-kind analytical contributions)

Overview

- Introduction to SAR effects
- Water table modeling
- Leaching column experiments
- Remediation of SAR effects
- Conclusions and next steps

Introduction to SAR effects

SAR and hydraulic conductivity

- Water transport and soil structure can be affected by excess sodium
 - measured as high Sodium Adsorption Ratio, or SAR
- Caused by dispersion or swelling of clay particles
 - e.g., smectites in prairie soils
 - Root-zone SAR particularly problematic
 - may cause surface crusting, hard-pan, or poor infiltration
 - worsened by shear from rain-drops or tillage, and wet/dry cycles

- Root-zone SAR generally covered by SCARG guidelines
- What about subsoil SAR?

Subsoil SAR effects

- High SAR can greatly reduce hydraulic conductivity (K_{sat})
- especially in fine, clayey soils
- Subsoil SAR may potentially result in root-zone water-logging or perched water table
- Subsoils generally less sensitive to SAR than root-zone soils for several reasons:
- Not exposed to severe wet-dry cycles
- Not exposed to shearing and impact from rain-drops
- Not exposed to tillage
- Not exposed to abrupt dilution by low-EC rainwater or snowmelt (related to SAR / EC interactions)

SAR/EC interactions from literature

- High EC can protect from SAR effects
- helps prevent dispersion
- protection may diminish as salt is leached
- Useful research by Curtin et. al on SAR and EC
- Agriculture and Agri-Food Canada, Saskatoon, 1993
- experiments focused on repacked topsoil and relevance to irrigation
- topsoil typically sensitive due to shearing by tillage and low EC raindrops
- Measured hydraulic conductivity loss at various EC/SAR combinations
- expressed as relative K_{sat} (%)
- results highly dependent on texture (clay content)

 With this soil, a solution SAR of 40 resulted in a 10- to 20-fold K_{sat} reduction at low solution EC (<2 dS/m)

- likely a problem for root-zone soils with rain drops / tillage

• But, what K_{sat} reductions in <u>subsoil</u> are potentially significant?

Water table modeling

Water table modeling

- SAR effects on water table can be modeled in 3-dimensions using program such as Modflow[™]
 - helps give context to potentially significant K_{sat} reductions
- SAR effects on water table a function of many factors:
 - K_{sat} reduction
 - original water table depth
 - infiltration rate
 - vertical gradient
 - impact size
 - impact depth
- Intuitively, deeper and smaller subsoil SAR impacts likely have less effect on shallow water table

Modeling subsoil SAR effects

- Changes in water table modeled by varying several parameters
 - e.g., 3 m water table, 30 mm/year infiltration, 40 m wide impact, 1x10⁻⁸ m/s K_{sat}

- Here, deep SAR impact with 10-fold K_{sat} reduction has essentially no effect on water table
 - what if impacts are shallower?

Modeling subsoil SAR effects (cont'd)

- Here, shallower impact with 10-fold K_{sat} reduction has some effect on water table, but does not water-log the root-zone
 - what if impacts are more severe?

Modeling subsoil SAR effects (cont'd)

- Here, shallower impact with 10,000-fold K_{sat} reduction (10⁴) causes severe root-zone water-logging
- Significantly less K_{sat} reduction needed to cause water logging if shallower impacts and water table (*eg*, 1.5 m) **modeling ongoing**

Defining significant SAR effects

- Overall, subsoil K_{sat} reductions of 10- to 100-fold appear to be tolerated in many model scenarios
 - especially deeper, smaller impacts or deeper water tables
- In many cases, natural K_{sat} variability over a site may span several orders of magnitude (100-1,000 fold) despite similar lithology/SAR
 - Shelby tube results below show examples of such variability

Borehole	Depth (m)	% clay	Texture	Ksat (m/s)
Site 6-32, BH08-20	2.0 - 2.5	28	Clay loam	4x10 ⁻⁹
	3.1 – 3.4	38	Clay loam	2x10 ⁻¹⁰
	4.0 - 4.5	41	Clay loam	1x10 ⁻⁹
	5.2 – 5.7	43	Clay loam	8x10 ⁻¹¹
Site 4-3, BH08-33	2.0 - 2.4	24	Loam	1x10 ⁻⁷
	3.0 - 3.3	25	Loam	1x10 ⁻⁸
	4.8 - 5.3	22	Loam	2x10 ⁻⁹

Defining significant SAR effects (cont'd)

- In dry climates or soils with poor water-holding capacity or deep water tables, some scenarios where a shallower water table may be beneficial can be envisioned
 - e.g., potentially more water available for plant roots
 - suggests K_{sat} reductions may not always be detrimental

- Overall, for subsoil SAR, it appears K_{sat} reductions should potentially be considered on an order-of-magnitude scale (e.g., approaching 10-fold or more) for effects to be significant
 - what EC/SAR combinations may cause these magnitudes of K_{sat} losses?

Leaching column experiments: Phase 1

Leaching column experiments: Phase 1

- Preliminary 2009 experiments developed and refined leaching column methodology
 - tested solution SAR up to 40
 - tested various leaching column types
 - see Equilibrium presentation from PTAC Soil and Groundwater Forum (March 2010) for details – online –

- Performed numerous column experiments in early 2010 to extend previous 2009 results
 - additional soil types
 - higher solution SAR values (up to 69)

SAR = 69 Series

• Tested several columns to see effects of solution SAR=69 (equivalent to sat paste SAR of approx 40, relatively heavy SAR impact)

Example #1: repacked soil (clay loam)

Initial baseline achieved with solution EC=17, SAR=8.7

(equivalent to approximately sat paste EC=6, SAR=5)

K_{sat} drops further as EC is further reduced (despite solution SAR of 0)

SAR = 69 series (cont'd)

Example #2: Repacked soil (loam)

- From one of several sites in Medicine Hat area
- NaCI-impacted soil first remediated with gypsum and magnesium sulfate
- Then leached with SAR up to 69

SAR=69 series (cont'd)

Example #3: Undisturbed soil core (clay loam)

- Sodic soil remediated with EC=17, SAR=8.7
- Then leached with SAR up to 69 then dropped EC

SAR=69 experiments summary

- Results from six SAR=69 experiments shown overlain on Curtin's 'Willows' soil below
- Fits overall pattern, but extends to higher SAR (69 vs 40)

- Additional examples also shown in presentations at:
- Exova Environmental Seminar (Jan 2011) online-
- PTAC Soil and Groundwater Forum (March 2011) -online-

Leaching column experiments: Phase 2

2010 leaching column experiments: Phase 2

- Results from Phase 1 expanded by investigating:
 - higher SAR values (up to solution SAR = 115)
 - lower SAR values (solution SAR = 10 40)
 - low conductivity soils
 - coarse / sandy soils
 - organic / peat soils

Higher SAR

• Tested new columns at higher SAR up 115

Example #4: clay loam soil

- Dropped EC from 80 to 2 with fixed SAR of 115
- Main effects as EC drops to 17, further effects at lower EC

Lower SAR

• Also did some series at lower SAR of 10-40

Example #5: clay loam soil

- One of numerous columns from a field of sites near Lloydminster
- Dropped EC from 17 to 2 with fixed SAR of 40
- Main effects as EC drops to 2

Low conductivity soils

 Tested low-conductivity background soils for context (approx 10⁻¹⁰ m/s unimpacted)

Example #6: clay loam soil

- Very little change from high-EC baseline to harsh low-EC NaCl solution

Low conductivity soils (cont'd)

Example #7: clay loam soil

- Unimpacted tight clay from near Lloydminster
- Varies approx 3-fold between 4x10⁻¹¹ and 1x10⁻¹⁰ m/s over large EC/SAR range
- To compare, compacted clay liners must be <10⁻⁹ m/s

Coarse / sandy soils

- Examined effects of SAR on coarse / sandy soils
- Experiments show generally low sensitivity to SAR
- K_{sat} changes were generally less than 1 order of magnitude
- Sandy example #1 (undisturbed core):
- moderate effect at harsh, pure NaCl solution (EC~1)
- otherwise, no significant changes over large EC/SAR ranges

Coarse / sandy soils (cont'd)

- Sandy example #2 (undisturbed core):
- no significant changes over large EC / SAR ranges
- note that not all sandy soils have high initial K_{sat}

- Sandy example #3 (repacked soil):
- No significant changes over large EC range at SAR=115

Organic soils

- Examined effects of SAR on organic peat soils
- 70 80% organic matter
- 500-700% saturation percentage
- Organic example #1 (undisturbed core):
- Base-lined with EC=2, SAR=1
- Minimal effects with harsh SAR=115 solution (EC~2)

Organic soils (cont'd)

Organic example #2 (undisturbed core):

also minimal effects

- In both examples, saturated paste SAR ~30+ at completion of experiment
- Overall, preliminary results suggest minimal SAR effects on some peat soils
- may reduce / eliminate the need to remediate SAR-impacted peat soils

Remediation of SAR effects

Remediation of SAR effects

- One example from Phase 1 showed remediation to baseline with calcium or magnesium sulfate salts
- also relevant for natural attenuation of SAR impacts with background salinity

Remediation example #2:

- two remediation cycles to essentially baseline K_{sat}
- no visible side-effects, good apparent reversibility in this case

Remediation of SAR effects (cont'd)

- In some cases, development of flow channels suggests remediation of severely-impacted soils may not be completely homogenous in all cases
- macroscopic voids or channels may develop as soils are remediated from a severely dispersed/swelled state
- likely an effect similar to shrinkage cracking

 However, in general, it appears many SAR effects may be reversed given sufficient time while leaching with low SAR and/or high EC

Conclusions and next steps

Conclusions

• Excess subsoil SAR may cause water-logging or watertable perching

- a function of depth and area of impacts as well as K_{sat} reduction
- can be estimated via three-dimensional water-table modeling
- Leaching columns useful for studying SAR effects
 - allows studying the interactions between SAR, EC, and K_{sat}
 - allows useful comparisons with previous work from literature
- High SAR values may reduce K_{sat} by up to 1-3 orders of magnitude
 - largest effects typically occur at lowest EC's
- Some soils may be less sensitive to SAR
 - Some coarse soils
 - Some low-conductivity soils
 - Some organic / peat soils
- Many SAR effects appear to be reversible
 - calcium and magnesium salts can be effective for remediating SAR
 - sufficiently high EC can also reverse SAR effects in many cases

Next steps toward subsoil SAR guidelines

- Continued leaching column experiments on subsoils
 - additional EC/SAR combinations
 - additional soil textures
 - additional replicates
 - Further evaluation of the reversibility of SAR-induced K_{sat} losses
 - relevant for remediation options
 - relevant for natural attenuation
- Further three-dimensional water table modeling as a function of magnitude, size, and depth of SAR impacts
 - important for choosing appropriate effect levels
 - relevant for guideline development
 - Synthesis of results from many (currently 50+) leaching column experiments along with water-table modeling to generate subsoil SAR guideline recommendations
 - Results from this experimental work are to be incorporated into Subsoil Salinity Tool (SST)

Thank-you!

Questions?