

ACKNOWLEDGMENTS

Success Through Science®

Paul Helm
Dan Toner
David Morse

Terry Obal Suman Punani Mariana Cojocar

- Challenges with Conventional PAH Sampling and Analysis
- Site Case Study
- Objectives and Experimental Design
- Results
- Next Steps

Introduction and Background

Success Through Science®

Problem Statement:

- Most environmental standards for groundwater are based on "dissolved" analyte concentrations
- Conventional analytical methods do not measure freely dissolved concentrations because of the difficulty in partitioning or removing the solids from groundwater samples without impacting the integrity of the data
- Difficult to obtain samples without sediment
- Varying sediment levels can lead to scattered data (ie Waterra vs peristaltic pump)
- Lead to biased high results and an overestimation of risk

Maxxam

Peterborough Gas Works Simcoe Street Facility

Success Through Science®

Test Site:

- Peterborough, Ontario
- Operated as a coal gas manufacturing facility, carburetted gas plant and propane facility from the 1860's to mid-1950s
- Adjacent to the Otonabee River
- Current use:
 - Provincial Courthouse;
 - Parking lot;
 - Electrical transformer station; and
 - Park

Existing and Historical Monitoring

- Environmental data available since mid 1980's
- Environmental impacts include soil and groundwater contamination with PAHs and PHCs
- LNAPL and DNAPL are present on the site and adjacent properties
- Discharge of LNAPL to the Otonabee River has been observed
- DNAPL extends partially below river

Current Investigation

Success Through Science®

Current activities:

- Develop remediation objectives and a remedial action plan for the site and adjacent properties (Dillon, 2011)
- Investigation includes:
 - Soil, groundwater, surface water and soil vapour sampling
 - Delineation of LNAPL and DNAPL using Laser Induced Fluorescence technology
 - Development of remediation objectives for the site through risk assessment
 - Review of potential remedial options and selection of preferred option, including conceptual design

Passive Sampling Devices

- Polyethylene Membrane Devices (PMDs) have been used in recent studies to determine dissolved PAH, PCB and other hydrophobic organic compounds in surface water (Booji *et.al.* 2003; Adams *et.al.* 2007; Fernandez *et. al.* 2008; Hale *et. al.* 2010; Lohmann *et.al.* 2011;)
- PMDs used as the sampling technology to conclude in the "Schindler Report" Oil Sands Development Contributes Polycyclic Aromatic Compounds to the Athabasca River and its Tributaries, 2009
- PE sampling for groundwater has not been validated
- Other passive samplers include Polyoxymethylene (POM), Passive
 Diffusion Bags (PDBs) and Semi-permeable Membrane Devices (SPMDs)

Principles of Passive Sampling

- PAHs will adsorb onto the polyethylene from the dissolved phase until equilibrium is achieved with dissolved concentration in GW
- PAHs bound to particulate or with organic matter will stay fixed
- After exposure, analysis of PE is completed by solvent extraction, GC/MS (results in ug PAH/g of PE)
- Published PE/water partition coefficients are used to quantify results in ug/L

Passive Diffusion Bags vs PE Samplers

Success Through Science®

PDBs

- Used for VOCs
- Filled with organic free water
- Principle of the technology is that VOCs will diffuse across PE membrane and "contaminate" the water in the PDB
- Deployed for ~ 2 weeks to reach equilibrium

PE Samplers

- Used for SVOCs
- Are not filled with water
- Principle of the technology is that SVOCs will adsorb to the PE

Sampling Media

- Strips of low density polyethylene cut from commercial sheeting with a thickness of 51 um (2 mil)
- Surface area = 145 cm²
- Dimensions altered to fit a 2" well and to capture across a 18" well screen
- Strips were cleaned for 48hrs with
 - Dichloromethane
 - Methanol
 - Water

Advantages

- Elimination of sediment problems in groundwater analysis results in the...
 - ... "true" dissolved concentration
 - ...potential improved data consistency over time
- Longer deployment time can lead to more representative data
- Hanging multiple PE samplers could provide stratification data
- Elimination of the need to purge wells.... field time and cost savings
- No need to dispose of contaminated purge water...time and cost savings
- Reduced cross contamination potential from purging pumps and other field equipment
- Small sample sizes, shipping volumes and reduced breakage risk and decreased shipping costs

Study Objectives

- Determine applicability of low density polyethylene (LDPE) samplers for measuring freely dissolved PAH concentrations in groundwater
- Determine the time to reach equilibrium for each individual compound
- Compare the results from PE samplers deployed in the field to conventional sampling methods

Experimental Design

Success Through Science®

Preparation

Exposure

Analysis

Phase I: Laboratory Trials

- 1L deionised water in amber glass bottles
- Spiked 10 ug/L PAHs
- LDPE in spike water

- 4 days
- 8 days
- 12 days
- 30 days
- 60 days

- LDPE Samplers
- Spiked water after exposure

Phase II: Field Trials

Sample 1:

- 1L groundwater in amber glass bottles
- LDPE in glass bottles with sample
 Sample 2:
- LDPE in monitoring well

- 30 days

- Groundwater (Conventional PAH analysis)
- LDPE Sampler (from bottled sample)
- LDPE Sampler (from monitoring well)

Phase 1 Results :Lab Spiking Study % Sorption vs. Solubility Spiked at

152

142

142

128

3930

24600

25800

31700

Solubility in

Success Through Science®

Hydrocarbons	MW	water (ug/L)	4 days	8 days	30 days	60 days
Benzo(g,h,i)perylene	276	0.3	26%	22%	28%	22%
Dibenz(a,h)anthracene	278	0.5	25%	23%	27%	22%
Benzo(k)fluoranthene	252	0.8	27%	25%	39%	32%
Benzo(a)pyrene	252	2.3	27%	28%	40%	33%
Chrysene	228	2.8	29%	27%	48%	43%
Benzo(b/j)fluoranthene	252	4.0	28%	29%	46%	41%
Benzo(a)anthracene	228	10.0	30%	32%	55%	51%
Indeno(1,2,3-cd)pyrene	276	62.0	25%	22%	33%	27%
Anthracene	178	76.0	57%	68%	79%	82%
Pyrene	202	77.0	58%	68%	76%	76%
Fluoranthene	202	200	66%	77%	83%	83%
Phenanthrene	178	1200	79%	85%	86%	87%
Fluorene	166	1680	75%	77%	74%	79%
Acenaphthene	154	1930	71%	73%	71%	74%

Acenaphthylene

Naphthalene

2-Methylnaphthalene

1-Methylnanhthalene

Polynucloar Aromatic

57%

65%

63%

33%

52%

61%

59%

27%

54%

60%

62%

27%

54%

64%

63%

31%

Data Comparison: Field Sampling (LDPE) vs. Lab Sampling (LDPE)

Success Through Science®

Polynuclear Aromatic Hydrocarbons	RDL's		ntional Methods*	PE Sampler (deployed in in lab)			PE Sampler (field deployed in well)
		Water (Replicate 1)	Water (Replicate 2)	Strip (Replicate 1)	Strip (Replicate 2)	Strip (Replicate 3)	Strip
Acenaphthene	0.05	1.06	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	0.05	0.24	<0.05	<0.05	<0.05	<0.05	0.19
Fluoranthene	0.05	0.17	0.09	0.12	0.12	0.14	0.08
Pyrene	0.05	0.19	0.12	0.17	0.16	0.19	0.20

Notes:

* Samples collected in 1L amber bottles and extracted as a whole including particulate Samples collected using peristaltic pump
All results reported in (ug/L)

- Evaluate PE samplers in different subsurface conditions (low vs high permeable soils)
- Evaluate potential naphthalene evaporation loss
- Investigate the use of using isotopically labeled performance reference compounds (PRCs) to correct data for % sorption vs using sorption coefficients
- Analyze additional general chemistry (TDS,TSS,DOC,TOC)
- Build a statistically significant dataset
- Validate ideal deployment time (ie 4 days)

